Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simplex algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Leaving variable selection=== Once the pivot column has been selected, the choice of pivot row is largely determined by the requirement that the resulting solution be feasible. First, only positive entries in the pivot column are considered since this guarantees that the value of the entering variable will be nonnegative. If there are no positive entries in the pivot column then the entering variable can take any non-negative value with the solution remaining feasible. In this case the objective function is unbounded below and there is no minimum. Next, the pivot row must be selected so that all the other basic variables remain positive. A calculation shows that this occurs when the resulting value of the entering variable is at a minimum. In other words, if the pivot column is ''c'', then the pivot row ''r'' is chosen so that :<math>b_r / a_{rc}\,</math> is the minimum over all ''r'' so that ''a''<sub>''rc''</sub> > 0. This is called the ''minimum ratio test''.<ref name="Murty66"/> If there is more than one row for which the minimum is achieved then a ''dropping variable choice rule''<ref>{{harvtxt|Murty|1983|p=67}}</ref> can be used to make the determination.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)