Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simultaneous equations model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Limited information maximum likelihood (LIML) === The “limited information” maximum likelihood method was suggested by [[Meyer Abraham Girshick|M. A. Girshick]] in 1947,<ref>First application by {{cite journal |first1=M. A. |last1=Girshick |first2=Trygve |last2=Haavelmo |title=Statistical Analysis of the Demand for Food: Examples of Simultaneous Estimation of Structural Equations |journal=[[Econometrica]] |volume=15 |issue=2 |year=1947 |pages=79–110 |doi= 10.2307/1907066|jstor=1907066 }}</ref> and formalized by [[Theodore Wilbur Anderson|T. W. Anderson]] and [[Herman Rubin|H. Rubin]] in 1949.<ref>{{cite journal | last1 = Anderson | first1 = T.W. | last2 = Rubin | first2 = H. | title = Estimator of the parameters of a single equation in a complete system of stochastic equations | year = 1949 | journal = [[Annals of Mathematical Statistics]] | volume = 20 | issue = 1 | pages = 46–63 | jstor = 2236803 | doi=10.1214/aoms/1177730090 | doi-access = free }}</ref> It is used when one is interested in estimating a single structural equation at a time (hence its name of limited information), say for observation i: : <math> y_i = Y_{-i}\gamma_i +X_i\beta_i+ u_i \equiv Z_i \delta_i + u_i </math> The structural equations for the remaining endogenous variables Y<sub>−i</sub> are not specified, and they are given in their reduced form: : <math> Y_{-i} = X \Pi + U_{-i} </math> Notation in this context is different than for the simple [[Instrumental variable|IV]] case. One has: * <math>Y_{-i}</math>: The endogenous variable(s). * <math>X_{-i}</math>: The exogenous variable(s) * <math>X</math>: The instrument(s) (often denoted <math>Z</math>) The explicit formula for the LIML is:<ref>{{cite book | last = Amemiya | first = Takeshi | title = Advanced Econometrics | year = 1985 | publisher = Harvard University Press | location = Cambridge, Massachusetts | isbn = 0-674-00560-0 | page = [https://archive.org/details/advancedeconomet00amem/page/235 235] | url-access = registration | url = https://archive.org/details/advancedeconomet00amem }}</ref> : <math> \hat\delta_i = \Big(Z'_i(I-\lambda M)Z_i\Big)^{\!-1}Z'_i(I-\lambda M)y_i, </math> where {{nowrap|''M'' {{=}} ''I − X'' (''X'' ′''X'')<sup>−1</sup>''X'' ′}}, and ''λ'' is the smallest characteristic root of the matrix: : <math> \Big(\begin{bmatrix}y_i\\Y_{-i}\end{bmatrix} M_i \begin{bmatrix}y_i&Y_{-i}\end{bmatrix} \Big) \Big(\begin{bmatrix}y_i\\Y_{-i}\end{bmatrix} M \begin{bmatrix}y_i&Y_{-i}\end{bmatrix} \Big)^{\!-1} </math> where, in a similar way, {{nowrap|''M<sub>i</sub>'' {{=}} ''I − X<sub>i</sub>'' (''X<sub>i</sub>''′''X<sub>i</sub>'')<sup>−1</sup>''X<sub>i</sub>''′}}. In other words, ''λ'' is the smallest solution of the [[Generalized eigenvalue problem#Generalized eigenvalue problem|generalized eigenvalue problem]], see {{harvtxt|Theil|1971|loc=p. 503}}: : <math> \Big|\begin{bmatrix}y_i&Y_{-i}\end{bmatrix}' M_i \begin{bmatrix}y_i&Y_{-i}\end{bmatrix} -\lambda \begin{bmatrix}y_i&Y_{-i}\end{bmatrix}' M \begin{bmatrix}y_i&Y_{-i}\end{bmatrix} \Big|=0 </math> ==== K class estimators ==== The LIML is a special case of the K-class estimators:<ref name="DavidsonMacKinnon649">{{cite book | last1 = Davidson | first1 = Russell | last2 = MacKinnon | first2 = James G. | title = Estimation and inference in econometrics | year = 1993 | publisher = Oxford University Press | isbn = 0-19-506011-3 | page=649 }}</ref> : <math> \hat\delta = \Big(Z'(I-\kappa M)Z\Big)^{\!-1}Z'(I-\kappa M)y, </math> with: * <math> \delta = \begin{bmatrix} \beta_i & \gamma_i\end{bmatrix} </math> * <math> Z = \begin{bmatrix} X_i & Y_{-i}\end{bmatrix} </math> Several estimators belong to this class: * κ=0: [[Ordinary least squares|OLS]] * κ=1: 2SLS. Note indeed that in this case, <math> I-\kappa M = I-M= P </math> the usual projection matrix of the 2SLS * κ=λ: LIML * κ=λ - α / (n-K): {{harvtxt|Fuller|1977}} estimator.<ref>{{cite journal | last = Fuller | first = Wayne |author-link=Wayne Fuller | title = Some Properties of a Modification of the Limited Information Estimator | year = 1977 | journal = Econometrica | volume = 45 |issue=4 | pages = 939–953 | doi=10.2307/1912683 | jstor = 1912683 }}</ref> Here K represents the number of instruments, n the sample size, and α a positive constant to specify. A value of α=1 will yield an estimator that is approximately unbiased.<ref name="DavidsonMacKinnon649" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)