Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral radius
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Symmetric matrices== For real-valued matrices <math>A</math> the inequality <math>\rho(A) \leq {\|A\|}_{2}</math> holds in particular, where <math>{\|\cdot\|}_{2}</math> denotes the [[Matrix_norm#Spectral_norm|spectral norm]]. In the case where <math>A</math> is [[:en:Symmetric_matrix|symmetric]], this inequality is tight: '''Theorem.''' Let <math>A \in \mathbb{R}^{n \times n}</math> be symmetric, i.e., <math>A = A^T.</math> Then it holds that <math>\rho(A) = {\|A\|}_{2}.</math> '''Proof''' Let <math>(v_i, \lambda_i)_{i=1}^{n}</math> be the eigenpairs of ''A''. Due to the symmetry of ''A'', all <math>v_i</math> and <math>\lambda_i</math> are real-valued and the eigenvectors <math>v_i</math> are [[Orthonormal_basis|orthonormal]]. By the definition of the spectral norm, there exists an <math>x \in \mathbb{R}^{n}</math> with <math>{\|x\|}_{2} = 1</math> such that <math>{\|A\|}_{2} = {\| A x \|}_{2}.</math> Since the eigenvectors <math>v_i</math> form a basis of <math>\mathbb{R}^{n},</math> there exists factors <math>\delta_{1}, \ldots, \delta_{n} \in \mathbb{R}^{n}</math> such that <math>\textstyle x = \sum_{i = 1}^{n} \delta_{i} v_{i}</math> which implies that :<math>A x = \sum_{i = 1}^{n}\delta_{i} A v_{i} = \sum_{i = 1}^{n} \delta_{i} \lambda_{i} v_{i}.</math> From the orthonormality of the eigenvectors <math>v_i</math> it follows that :<math>{\| A x\|}_{2} = \| \sum_{i = 1}^{n} \delta_{i} \lambda_{i} v_{i}\|_{2} = \sum_{i = 1}^{n} {|\delta_{i}|} \cdot {|\lambda_{i}|} \cdot {\| v_{i}\|}_{2} = \sum_{i = 1}^{n} {|\delta_{i}|} \cdot {|\lambda_{i}|} </math> and :<math>{\|x\|}_{2} = \| \sum_{i = 1}^{n} \delta_{i} v_{i} \|_{2} = \sum_{i = 1}^{n} {|\delta_{i}|} \cdot {\| v_{i} \|}_{2} = \sum_{i = 1}^{n} {|\delta_{i}|}.</math> Since <math>x</math> is chosen such that it maximizes <math>{\|Ax\|}_{2}</math> while satisfying <math>{\|x\|}_{2} = 1,</math> the values of <math>\delta_{i}</math> must be such that they maximize <math>\textstyle \sum_{i = 1}^{n} {|\delta_{i}|} \cdot {|\lambda_{i}|}</math> while satisfying <math>\textstyle \sum_{i = 1}^{n} {|\delta_{i}|} = 1.</math> This is achieved by setting <math>\delta_{k} = 1</math> for <math>k = \mathrm{arg\,max}_{i=1}^{n} {|\lambda_i|}</math> and <math>\delta_{i} = 0</math> otherwise, yielding a value of <math>{\|Ax\|}_{2} = {|\lambda_k|} = \rho(A).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)