Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectrum of a ring
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Global or relative Spec == There is a relative version of the functor <math>\operatorname{Spec}</math> called global <math>\operatorname{Spec}</math>, or relative <math>\operatorname{Spec}</math>. If <math>S</math> is a scheme, then relative <math>\operatorname{Spec}</math> is denoted by <math>\underline{\operatorname{Spec}}_S</math> or <math>\mathbf{Spec}_S</math>. If <math>S</math> is clear from the context, then relative Spec may be denoted by <math>\underline{\operatorname{Spec}}</math> or <math>\mathbf{Spec}</math>. For a scheme <math>S</math> and a [[quasi-coherent sheaf|quasi-coherent]] [[sheaf of algebras|sheaf of <math>\mathcal{O}_S</math>-algebras]] <math>\mathcal{A}</math>, there is a scheme <math>\underline{\operatorname{Spec}}_S(\mathcal{A})</math> and a morphism <math>f : \underline{\operatorname{Spec}}_S(\mathcal{A}) \to S</math> such that for every open affine <math>U \subseteq S</math>, there is an isomorphism <math>f^{-1}(U) \cong \operatorname{Spec}(\mathcal{A}(U))</math>, and such that for open affines <math>V \subseteq U</math>, the inclusion <math>f^{-1}(V) \to f^{-1}(U)</math> is induced by the restriction map <math>\mathcal{A}(U) \to \mathcal{A}(V)</math>. That is, as ring homomorphisms induce opposite maps of spectra, the restriction maps of a sheaf of algebras induce the inclusion maps of the spectra that make up the '''Spec''' of the sheaf. Global Spec has a universal property similar to the universal property for ordinary Spec. More precisely, just as Spec and the global section functor are contravariant right adjoints between the category of commutative rings and schemes, global Spec and the direct image functor for the structure map are contravariant right adjoints between the category of commutative <math>\mathcal{O}_S</math>-algebras and schemes over <math>S</math>.{{dubious|don't you need quasi-coherent?|date=January 2018}} In formulas, :<math>\operatorname{Hom}_{\mathcal{O}_S\text{-alg}}(\mathcal{A}, \pi_*\mathcal{O}_X) \cong \operatorname{Hom}_{\text{Sch}/S}(X, \mathbf{Spec}(\mathcal{A})),</math> where <math>\pi \colon X \to S</math> is a morphism of schemes. === Example of a relative Spec === The relative spec is the correct tool for parameterizing the family of lines through the origin of <math>\mathbb{A}^2_\mathbb{C}</math> over <math>X = \mathbb{P}^1_{a,b}.</math> Consider the sheaf of algebras <math>\mathcal{A} = \mathcal{O}_X[x,y],</math> and let <math>\mathcal{I} = (ay-bx)</math> be a sheaf of ideals of <math>\mathcal{A}.</math> Then the relative spec <math>\underline{\operatorname{Spec}}_X(\mathcal{A}/\mathcal{I}) \to \mathbb{P}^1_{a,b}</math> parameterizes the desired family. In fact, the fiber over <math>[\alpha:\beta]</math> is the line through the origin of <math>\mathbb{A}^2</math> containing the point <math>(\alpha,\beta).</math> Assuming <math>\alpha \neq 0,</math> the fiber can be computed by looking at the composition of pullback diagrams :<math>\begin{matrix} \operatorname{Spec}\left( \frac{\mathbb{C}[x,y]}{\left(y-\frac{\beta}{\alpha}x\right)} \right) & \to & \operatorname{Spec}\left( \frac{\mathbb{C}\left[\frac{b}{a}\right] [x,y]}{\left(y-\frac{b}{a}x\right)} \right) & \to & \underline{\operatorname{Spec}}_X\left( \frac{\mathcal{O}_X[x,y]}{\left(ay-bx\right)} \right)\\ \downarrow & & \downarrow & & \downarrow \\ \operatorname{Spec}(\mathbb{C})& \to & \operatorname{Spec}\left(\mathbb{C}\left[\frac{b}{a}\right]\right)=U_a & \to & \mathbb{P}^1_{a,b} \end{matrix}</math> where the composition of the bottom arrows :<math>\operatorname{Spec}(\mathbb{C})\xrightarrow{[\alpha:\beta]} \mathbb{P}^1_{a,b}</math> gives the line containing the point <math>(\alpha,\beta)</math> and the origin. This example can be generalized to parameterize the family of lines through the origin of <math>\mathbb{A}^{n+1}_\mathbb{C}</math> over <math>X = \mathbb{P}^n_{a_0,...,a_n}</math> by letting <math>\mathcal{A} = \mathcal{O}_X[x_0,...,x_n]</math> and <math>\mathcal{I} = \left( 2\times 2 \text{ minors of } \begin{pmatrix}a_0 & \cdots & a_n \\ x_0 & \cdots & x_n\end{pmatrix} \right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)