Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Splitting field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The complex numbers === Consider the [[polynomial ring]] '''R'''[''x''], and the [[irreducible polynomial]] {{nowrap|1=''x''<sup>2</sup> + 1.}} The [[quotient ring]] {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} is given by the [[Congruence relation|congruence]] {{nowrap|1=''x''<sup>2</sup> ≡ −1.}} As a result, the elements (or [[equivalence class]]es) of {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} are of the form {{nowrap|1=''a'' + ''bx''}} where ''a'' and ''b'' belong to '''R'''. To see this, note that since {{nowrap|1=''x''<sup>2</sup> ≡ −1}} it follows that {{nowrap|1=''x''<sup>3</sup> ≡ −''x''}}, {{nowrap|1=''x''<sup>4</sup> ≡ 1}}, {{nowrap|1=''x''<sup>5</sup> ≡ ''x''}}, etc.; and so, for example {{nowrap|1=''p'' + ''qx'' + ''rx''<sup>2</sup> + ''sx''<sup>3</sup> ≡ ''p'' + ''qx'' + ''r''(−1) + ''s''(−''x'') = (''p'' − ''r'') + (''q'' − ''s'')''x''.}} The addition and multiplication operations are given by firstly using ordinary polynomial addition and multiplication, but then reducing modulo {{nowrap|1=''x''<sup>2</sup> + 1}}, i.e. using the fact that {{nowrap|1=''x''<sup>2</sup> ≡ −1}}, {{nowrap|1=''x''<sup>3</sup> ≡ −''x''}}, {{nowrap|1=''x''<sup>4</sup> ≡ 1}}, {{nowrap|1=''x''<sup>5</sup> ≡ ''x''}}, etc. Thus: :<math>(a_1 + b_1x) + (a_2 + b_2x) = (a_1 + a_2) + (b_1 + b_2)x, </math> :<math>(a_1 + b_1x)(a_2 + b_2x) = a_1a_2 + (a_1b_2 + b_1a_2)x + (b_1b_2)x^2 \equiv (a_1a_2 - b_1b_2) + (a_1b_2 + b_1a_2)x \, . </math> If we identify {{nowrap|1=''a'' + ''bx''}} with (''a'',''b'') then we see that addition and multiplication are given by :<math>(a_1,b_1) + (a_2,b_2) = (a_1 + a_2,b_1 + b_2), </math> :<math>(a_1,b_1)\cdot (a_2,b_2) = (a_1a_2 - b_1b_2,a_1b_2 + b_1a_2). </math> We claim that, as a field, the quotient ring {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} is [[isomorphic]] to the [[complex number]]s, '''C'''. A general complex number is of the form {{nowrap|1=''a'' + ''bi''}}, where ''a'' and ''b'' are real numbers and {{nowrap|1=''i''<sup>2</sup> = −1.}} Addition and multiplication are given by :<math>(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + i(b_1 + b_2),</math> :<math>(a_1 + b_1 i) \cdot (a_2 + b_2 i) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1).</math> If we identify {{nowrap|1=''a'' + ''bi''}} with (''a'', ''b'') then we see that addition and multiplication are given by :<math>(a_1,b_1) + (a_2,b_2) = (a_1 + a_2,b_1 + b_2),</math> :<math>(a_1,b_1)\cdot (a_2,b_2) = (a_1a_2 - b_1b_2,a_1b_2 + b_1a_2).</math> The previous calculations show that addition and multiplication behave the same way in {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} and '''C'''. In fact, we see that the map between {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1)}} and '''C''' given by {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is a [[homomorphism]] with respect to addition ''and'' multiplication. It is also obvious that the map {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is both [[injective]] and [[surjective]]; meaning that {{nowrap|1=''a'' + ''bx'' → ''a'' + ''bi''}} is a [[bijective]] homomorphism, i.e., an [[ring isomorphism|isomorphism]]. It follows that, as claimed: {{nowrap|1='''R'''[''x''] / (''x''<sup>2</sup> + 1) ≅ '''C'''.}} In 1847, [[Augustin-Louis Cauchy|Cauchy]] used this approach to ''define'' the complex numbers.<ref>{{Citation|last = Cauchy|first = Augustin-Louis|author-link = Augustin-Louis Cauchy|title = Mémoire sur la théorie des équivalences algébriques, substituée à la théorie des imaginaires|journal = [[Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences]]|volume = 24|year = 1847|language = fr|pages = 1120–1130}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)