Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Squeezed coherent state
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Two-mode squeezed states==== Two-mode squeezing involves two modes of the electromagnetic field which exhibit quantum noise reduction below the [[Shot noise|shot noise level]]{{clarify|reason=What is the "shot noise level"? A Poisson distribution?|date=September 2016}} in a linear combination of the quadratures of the two fields. For example, the field produced by a nondegenerate parametric oscillator above threshold shows squeezing in the amplitude difference quadrature. The first experimental demonstration of two-mode squeezing in optics was by Heidmann ''et al.''.<ref>{{cite journal | last1 = Heidmann | first1 = A. | last2 = Horowicz | first2 = R. | last3 = Reynaud | first3 = S. | last4 = Giacobino | first4 = E. | last5 = Fabre | first5 = C. | last6 = Camy | first6 = G. | year = 1987 | title = Observation of Quantum Noise Reduction on Twin Laser Beams | journal = Physical Review Letters | volume = 59 | issue = 22| pages = 2555β2557 | doi=10.1103/physrevlett.59.2555| pmid = 10035582 | bibcode = 1987PhRvL..59.2555H }}</ref> More recently, two-mode squeezing was generated on-chip using a four-wave mixing OPO above threshold.<ref>{{cite journal | last1 = Dutt | first1 = A. | last2 = Luke | first2 = K. | last3 = Manipatruni | first3 = S.|author4-link=Alexander Gaeta | last4 = Gaeta | first4 = A. L. | last5 = Nussenzveig | first5 = P. | last6 = Lipson | first6 = M. | year = 2015 | title = On-Chip Optical Squeezing | journal = Physical Review Applied | volume = 3 | issue = 4| page = 044005 | doi = 10.1103/physrevapplied.3.044005 | arxiv = 1309.6371 | bibcode = 2015PhRvP...3d4005D | doi-access = free }}</ref> Two-mode squeezing is often seen as a precursor to continuous-variable entanglement, and hence a demonstration of the [[Einstein-Podolsky-Rosen paradox]] in its original formulation in terms of continuous position and momentum observables.<ref>{{cite journal | last1 = Ou | first1 = Z. Y. | last2 = Pereira | first2 = S. F. | last3 = Kimble | first3 = H. J. | last4 = Peng | first4 = K. C. | year = 1992 | title = Realization of the Einstein-Podolsky-Rosen paradox for continuous variables | url = https://authors.library.caltech.edu/6493/1/OUZprl92.pdf| journal = Phys. Rev. Lett. | volume = 68 | issue = 25| pages = 3663β3666 | doi=10.1103/physrevlett.68.3663 | pmid=10045765| bibcode = 1992PhRvL..68.3663O | type = Submitted manuscript }}</ref><ref>{{cite journal | last1 = Villar | first1 = A. S. | last2 = Cruz | first2 = L. S. | last3 = Cassemiro | first3 = K. N. | last4 = Martinelli | first4 = M. | last5 = Nussenzveig | first5 = P. | s2cid = 13815567 | year = 2005 | title = Generation of Bright Two-Color Continuous Variable Entanglement | journal = Phys. Rev. Lett. | volume = 95 | issue = 24| page = 243603 | doi=10.1103/physrevlett.95.243603 | pmid=16384378| arxiv = quant-ph/0506139 | bibcode = 2005PhRvL..95x3603V }}</ref> A two-mode squeezed vacuum (TMSV) state can be mathematically represented as, :<math> |\text{TMSV}\rangle = S_2(\zeta)|0,0\rangle = \exp(\zeta^* \hat a \hat b - \zeta \hat a^\dagger \hat b^\dagger) |0,0\rangle </math>, and, writing down <math>\zeta = r e^{i\phi}</math>, in the photon number basis as,<ref>{{Cite journal|last1=Schumaker|first1=Bonny L.|last2=Caves|first2=Carlton M.|date=1985-05-01|title=New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation|journal=Physical Review A|volume=31|issue=5|pages=3093β3111|doi=10.1103/PhysRevA.31.3093|pmid=9895863|bibcode=1985PhRvA..31.3093S}}</ref> :<math> |\text{TMSV}\rangle = \frac{1}{\cosh r} \sum_{n=0}^\infty (-e^{i \phi}\tanh r)^n |nn\rangle</math> If the individual modes of a TMSV are considered separately (i.e., <math>|nn\rangle=|n\rangle_1 |n\rangle_2</math>), then tracing over or absorbing one of the modes leaves the remaining mode in a [[thermal state]] :<math>\begin{align}\rho_1 &= \mathrm{Tr}_2 [| \mathrm{TMSV} \rangle \langle \mathrm{TMSV} | ]\\ &= \frac{1}{\cosh^2(r)} \sum_{n=0}^\infty \tanh^{2n}(r) |n \rangle \langle n|, \end{align} </math> with an effective average number of photons <math>\widetilde{n} = \sinh^2(r)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)