Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Statistical mechanics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Monte Carlo==== {{main|Monte Carlo method in statistical mechanics}} Although some problems in statistical physics can be solved analytically using approximations and expansions, most current research utilizes the large processing power of modern computers to simulate or approximate solutions. A common approach to statistical problems is to use a [[Monte Carlo simulation]] to yield insight into the properties of a [[complex system]]. Monte Carlo methods are important in [[computational physics]], [[physical chemistry]], and related fields, and have diverse applications including [[medical physics]], where they are used to model radiation transport for radiation dosimetry calculations.<ref>{{cite journal | doi = 10.1088/0031-9155/59/4/R151 | pmid=24486639 | volume=59 | issue=4 | title=GPU-based high-performance computing for radiation therapy | journal=Physics in Medicine and Biology | pages=R151–R182|bibcode = 2014PMB....59R.151J | year=2014 | last1=Jia | first1=Xun | last2=Ziegenhein | first2=Peter | last3=Jiang | first3=Steve B | pmc=4003902 }}</ref><ref>{{cite journal | doi = 10.1088/0031-9155/59/6/R183 | volume=59 | issue=6 | title=Advances in kilovoltage x-ray beam dosimetry | journal=Physics in Medicine and Biology | pages=R183–R231|bibcode = 2014PMB....59R.183H | pmid=24584183 | date=Mar 2014| last1=Hill | first1=R | last2=Healy | first2=B | last3=Holloway | first3=L | last4=Kuncic | first4=Z | last5=Thwaites | first5=D | last6=Baldock | first6=C | s2cid=18082594 }}</ref><ref>{{cite journal | doi = 10.1088/0031-9155/51/13/R17 | pmid=16790908 | volume=51 | issue=13 | title=Fifty years of Monte Carlo simulations for medical physics | journal=Physics in Medicine and Biology | pages=R287–R301|bibcode = 2006PMB....51R.287R | year=2006 | last1=Rogers | first1=D W O | s2cid=12066026 }}</ref> The [[Monte Carlo method]] examines just a few of the possible states of the system, with the states chosen randomly (with a fair weight). As long as these states form a representative sample of the whole set of states of the system, the approximate characteristic function is obtained. As more and more random samples are included, the errors are reduced to an arbitrarily low level. * The [[Metropolis–Hastings algorithm]] is a classic Monte Carlo method which was initially used to sample the canonical ensemble. * [[Path integral Monte Carlo]], also used to sample the canonical ensemble.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)