Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stirling's approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==A convergent version of Stirling's formula== [[Thomas Bayes]] showed, in a letter to [[John Canton]] published by the [[Royal Society]] in 1763, that Stirling's formula did not give a [[convergent series]].{{r|bayes-canton}} Obtaining a convergent version of Stirling's formula entails evaluating [[Gamma function#Raabe's formula|Binet's formula]]: <math display=block>\int_0^\infty \frac{2\arctan\left(\frac{t}{x}\right)}{e^{2\pi t}-1}\,{\rm d}t = \ln\Gamma(x) - x\ln x + x - \tfrac12\ln\frac{2\pi}{x}.</math> One way to do this is by means of a convergent series of inverted [[rising factorial]]s. If <math display=block>z^{\bar n} = z(z + 1) \cdots (z + n - 1),</math> then <math display=block>\int_0^\infty \frac{2\arctan\left(\frac{t}{x}\right)}{e^{2\pi t} - 1}\,{\rm d}t = \sum_{n=1}^\infty \frac{c_n}{(x + 1)^{\bar n}},</math> where <math display=block>c_n = \frac{1}{n} \int_0^1 x^{\bar n} \left(x - \tfrac{1}{2}\right)\,{\rm d}x = \frac{1}{2n}\sum_{k=1}^n \frac{k|s(n, k)|}{(k + 1)(k + 2)},</math> where {{math|''s''(''n'', ''k'')}} denotes the [[Stirling numbers of the first kind]]. From this one obtains a version of Stirling's series <math display=block>\begin{align} \ln\Gamma(x) &= x\ln x - x + \tfrac12\ln\frac{2\pi}{x} + \frac{1}{12(x+1)} + \frac{1}{12(x+1)(x+2)} + \\ &\quad + \frac{59}{360(x+1)(x+2)(x+3)} + \frac{29}{60(x+1)(x+2)(x+3)(x+4)} + \cdots, \end{align}</math> which converges when {{math|Re(''x'') > 0}}. Stirling's formula may also be given in convergent form as<ref>{{cite book |last1=Artin |first1=Emil |title=The Gamma Function |date=2015 |page = 24|publisher=Dover }}</ref> <math display=block> \Gamma(x)=\sqrt{2\pi}x^{x-\frac{1}{2}}e^{-x+\mu(x)} </math> where <math display=block> \mu\left(x\right)=\sum_{n=0}^{\infty}\left(\left(x+n+\frac{1}{2}\right)\ln\left(1+\frac{1}{x+n}\right)-1\right). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)