Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Strongly regular graph
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Adjacency matrix equations=== Let ''I'' denote the [[identity matrix]] and let ''J'' denote the [[matrix of ones]], both matrices of order ''v''. The [[adjacency matrix]] ''A'' of a strongly regular graph satisfies two equations. First: :<math>AJ = JA = kJ,</math> which is a restatement of the regularity requirement. This shows that ''k'' is an eigenvalue of the adjacency matrix with the all-ones eigenvector. Second: :<math>A^2 = kI + \lambda{A} + \mu(J - I - A)</math> which expresses strong regularity. The ''ij''-th element of the left hand side gives the number of two-step paths from ''i'' to ''j''. The first term of the right hand side gives the number of two-step paths from ''i'' back to ''i'', namely ''k'' edges out and back in. The second term gives the number of two-step paths when ''i'' and ''j'' are directly connected. The third term gives the corresponding value when ''i'' and ''j'' are not connected. Since the three cases are [[mutually exclusive]] and [[collectively exhaustive]], the simple additive equality follows. Conversely, a graph whose adjacency matrix satisfies both of the above conditions and which is not a complete or null graph is a strongly regular graph.<ref>{{citation|first1=P.J.|last1=Cameron|first2=J.H.|last2=van Lint|title=Designs, Graphs, Codes and their Links|publisher=Cambridge University Press|series=London Mathematical Society Student Texts 22|year=1991|isbn=978-0-521-42385-4|page=[https://archive.org/details/designsgraphscod0000came/page/37 37]|url=https://archive.org/details/designsgraphscod0000came/page/37}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)