Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Structural analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Method of joints==== This type of method uses the force balance in the x and y directions at each of the joints in the truss structure. :[[Image:Truss Structure Analysis, Method of Joints2.png|border|350x450px]] At A, :<math>\sum F_y=0=R_{Ay}+F_{AD}\sin(60)=5+F_{AD}\frac{\sqrt{3} }{2} \Rightarrow F_{AD}=-\frac{10}{\sqrt{3}}</math> :<math>\sum F_x=0=R_{Ax}+F_{AD}\cos(60)+F_{AB}=0-\frac{10}{\sqrt{3} }\frac{1}{2}+F_{AB} \Rightarrow F_{AB}=\frac{5}{\sqrt{3}}</math> At D, :<math>\sum F_y=0=-10-F_{AD}\sin(60)-F_{BD}\sin(60)=-10-\left(-\frac{10}{\sqrt{3}}\right)\frac{\sqrt{3} }{2}-F_{BD}\frac{\sqrt{3}}{2} \Rightarrow F_{BD}=-\frac{10}{\sqrt{3}}</math> :<math>\sum F_x=0=-F_{AD}\cos(60)+F_{BD}\cos(60)+F_{CD}=-\frac{10}{\sqrt{3}}\frac{1}{2}+\frac{10}{\sqrt{3} }\frac{1}{2}+F_{CD} \Rightarrow F_{CD}=0</math> At C, :<math>\sum F_y=0=-F_{BC} \Rightarrow F_{BC}=0</math> Although the forces in each of the truss elements are found, it is a good practice to verify the results by completing the remaining force balances. :<math>\sum F_x=-F_{CD}=-0=0 \Rightarrow verified</math> At B, :<math>\sum F_y=R_B+F_{BD}\sin(60)+F_{BC}=5+\left(-\frac{10}{\sqrt{3}}\right)\frac{\sqrt{3} }{2}+0=0 \Rightarrow verified</math> :<math>\sum F_x=-F_{AB}-F_{BD}\cos(60)=\frac{5}{\sqrt{3}}-\frac{10}{\sqrt{3}}\frac{1}{2}=0 \Rightarrow verified</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)