Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
System of linear equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Geometric interpretation=== For a system involving two variables (''x'' and ''y''), each linear equation determines a [[line (mathematics)|line]] on the ''xy''-[[Cartesian coordinate system|plane]]. Because a solution to a linear system must satisfy all of the equations, the solution set is the [[intersection (set theory)|intersection]] of these lines, and is hence either a line, a single point, or the [[empty set]]. For three variables, each linear equation determines a [[plane (mathematics)|plane]] in [[three-dimensional space]], and the solution set is the intersection of these planes. Thus the solution set may be a plane, a line, a single point, or the empty set. For example, as three parallel planes do not have a common point, the solution set of their equations is empty; the solution set of the equations of three planes intersecting at a point is single point; if three planes pass through two points, their equations have at least two common solutions; in fact the solution set is infinite and consists in all the line passing through these points.{{sfnp|Cullen|1990|p=3}} For ''n'' variables, each linear equation determines a [[hyperplane]] in [[n-dimensional space|''n''-dimensional space]]. The solution set is the intersection of these hyperplanes, and is a [[flat (geometry)|flat]], which may have any dimension lower than ''n''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)