Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit values== === [[:Wiktionary:lemniscatic|Lemniscatic]] values === Proper credit for most of these results goes to Ramanujan. See [[Ramanujan's lost notebook]] and a relevant reference at [[Euler function]]. The Ramanujan results quoted at [[Euler function]] plus a few elementary operations give the results below, so they are either in Ramanujan's lost notebook or follow immediately from it. See also Yi (2004).<ref name="Yi">{{Cite journal | first = Jinhee | last = Yi | title = Theta-function identities and the explicit formulas for theta-function and their applications | journal = Journal of Mathematical Analysis and Applications | pages = 381–400 | volume = 292 | issue = 2 | doi=10.1016/j.jmaa.2003.12.009 | year = 2004| doi-access = free }}</ref> Define, :<math>\quad \varphi(q) =\vartheta_{00}(0;\tau) =\theta_3(0;q)=\sum_{n=-\infty}^\infty q^{n^2}</math> with the nome <math>q =e^{\pi i \tau},</math> <math>\tau = n\sqrt{-1},</math> and [[Dedekind eta function]] <math>\eta(\tau).</math> Then for <math>n = 1,2,3,\dots</math> :<math>\begin{align} \varphi\left(e^{-\pi} \right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} = \sqrt2\,\eta\left(\sqrt{-1}\right)\\ \varphi\left(e^{-2\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{2+\sqrt2}}{2}\\ \varphi\left(e^{-3\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{1+\sqrt3}}{\sqrt[8]{108}}\\ \varphi\left(e^{-4\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{2+\sqrt[4]{8}}{4}\\ \varphi\left(e^{-5\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \sqrt{\frac{2+\sqrt5}{5}}\\ \varphi\left(e^{-6\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{\sqrt[4]{1}+\sqrt[4]{3}+\sqrt[4]{4}+\sqrt[4]{9}}}{\sqrt[8]{12^3}}\\ \varphi\left(e^{-7\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{\sqrt{13+\sqrt{7}}+\sqrt{7+3\sqrt{7}}}}{\sqrt[8]{14^3}\cdot\sqrt[16]{7}}\\ \varphi\left(e^{-8\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{2+\sqrt{2}}+\sqrt[8]{128}}{4}\\ \varphi\left(e^{-9\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{1+\sqrt[3]{2+2\sqrt{3}}}{3}\\ \varphi\left(e^{-10\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{\sqrt[4]{64}+\sqrt[4]{80}+\sqrt[4]{81}+\sqrt[4]{100}}}{\sqrt[4]{200}}\\ \varphi\left(e^{-11\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{11+\sqrt{11}+(5+3\sqrt{3}+\sqrt{11}+\sqrt{33})\sqrt[3]{-44+33\sqrt{3}}+(-5+3\sqrt{3}-\sqrt{11}+\sqrt{33})\sqrt[3]{44+33\sqrt{3}}}}{\sqrt[8]{52180524}}\\ \varphi\left(e^{-12\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{\sqrt[4]{1}+\sqrt[4]{2}+\sqrt[4]{3}+\sqrt[4]{4}+\sqrt[4]{9}+\sqrt[4]{18}+\sqrt[4]{24}}}{2\sqrt[8]{108}}\\ \varphi\left(e^{-13\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{13+8\sqrt{13}+(11-6\sqrt{3}+\sqrt{13})\sqrt[3]{143+78\sqrt{3}}+(11+6\sqrt{3}+\sqrt{13})\sqrt[3]{143-78\sqrt{3}}}}{\sqrt[4]{19773}}\\ \varphi\left(e^{-14\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{\sqrt{13+\sqrt{7}}+\sqrt{7+3\sqrt{7}}+\sqrt{10+2\sqrt{7}}+\sqrt[8]{28}\sqrt{4+\sqrt{7}}}}{\sqrt[16]{28^7}}\\ \varphi\left(e^{-15\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{7+3\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt[4]{60}+\sqrt[4]{1500}}}{\sqrt[8]{12^3}\cdot\sqrt{5}}\\ 2\varphi\left(e^{-16\pi}\right) &= \varphi\left(e^{-4\pi}\right) + \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt[4]{1+\sqrt{2}}}{\sqrt[16]{128}}\\ \varphi\left(e^{-17\pi}\right) &= \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \frac{\sqrt{2}(1+\sqrt[4]{17})+\sqrt[8]{17}\sqrt{5+\sqrt{17}}}{\sqrt{17+17\sqrt{17}}}\\ 2\varphi\left(e^{-20\pi}\right) &= \varphi\left(e^{-5\pi}\right) + \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \sqrt{\frac{3+2\sqrt[4]{5}}{5\sqrt2}}\\ 6\varphi\left(e^{-36\pi}\right) &= 3\varphi\left(e^{-9\pi}\right) + 2\varphi\left(e^{-4\pi}\right) - \varphi\left(e^{-\pi}\right) + \frac{\sqrt[4]{\pi}}{\Gamma\left(\frac34\right)} \sqrt[3]{\sqrt[4]{2}+\sqrt[4]{18}+\sqrt[4]{216}} \end{align}</math> If the reciprocal of the [[Gelfond constant]] is raised to the power of the reciprocal of an odd number, then the corresponding <math> \vartheta_{00} </math> values or <math> \phi </math> values can be represented in a simplified way by using the [[Lemniscate elliptic functions|hyperbolic lemniscatic sine]]: :<math> \varphi\bigl[\exp(-\tfrac{1}{5}\pi)\bigr] = \sqrt[4]{\pi}\,{\Gamma\left(\tfrac{3}{4}\right)}^{-1} \operatorname{slh}\bigl(\tfrac{1}{5}\sqrt{2}\,\varpi\bigr)\operatorname{slh}\bigl(\tfrac{2}{5}\sqrt{2}\,\varpi\bigr) </math> :<math> \varphi\bigl[\exp(-\tfrac{1}{7}\pi)\bigr] = \sqrt[4]{\pi}\,{\Gamma\left(\tfrac{3}{4}\right)}^{-1} \operatorname{slh}\bigl(\tfrac{1}{7}\sqrt{2}\,\varpi\bigr)\operatorname{slh}\bigl(\tfrac{2}{7}\sqrt{2}\,\varpi\bigr) \operatorname{slh}\bigl(\tfrac{3}{7}\sqrt{2}\,\varpi\bigr) </math> :<math> \varphi\bigl[\exp(-\tfrac{1}{9}\pi)\bigr] = \sqrt[4]{\pi}\,{\Gamma\left(\tfrac{3}{4}\right)}^{-1} \operatorname{slh}\bigl(\tfrac{1}{9}\sqrt{2}\,\varpi\bigr)\operatorname{slh}\bigl(\tfrac{2}{9}\sqrt{2}\,\varpi\bigr) \operatorname{slh}\bigl(\tfrac{3}{9}\sqrt{2}\,\varpi\bigr) \operatorname{slh} \bigl(\tfrac{4}{9}\sqrt{2}\,\varpi\bigr) </math> :<math> \varphi\bigl[\exp(-\tfrac{1}{11}\pi)\bigr] = \sqrt[4]{\pi}\,{\Gamma\left(\tfrac{3}{4}\right)}^{-1} \operatorname{slh}\bigl(\tfrac{1}{11}\sqrt{2}\,\varpi\bigr)\operatorname{slh}\bigl(\tfrac{2}{11}\sqrt{2}\,\varpi\bigr) \operatorname{slh}\bigl(\tfrac{3}{11}\sqrt{2}\,\varpi\bigr) \operatorname{slh} \bigl(\tfrac{4}{11}\sqrt{2}\,\varpi\bigr) \operatorname{slh}\bigl(\tfrac{5}{11}\sqrt{2}\,\varpi\bigr) </math> With the letter <math> \varpi </math> the [[Lemniscate constant]] is represented. Note that the following modular identities hold: :<math>\begin{align} 2\varphi\left(q^4\right) &= \varphi(q)+\sqrt{2\varphi^2\left(q^2\right)-\varphi^2(q)}\\ 3\varphi\left(q^9\right) &= \varphi(q)+\sqrt[3]{9\frac{\varphi^4\left(q^3\right)}{\varphi(q)}-\varphi^3(q)}\\ \sqrt{5}\varphi\left(q^{25}\right) &= \varphi\left(q^5\right)\cot\left(\frac{1}{2}\arctan\left(\frac{2}{\sqrt{5}}\frac{\varphi(q)\varphi\left(q^5\right)}{\varphi^2(q)-\varphi^2\left(q^5\right)}\frac{1+s(q)-s^2(q)}{s(q)}\right)\right) \end{align}</math> where <math>s(q)=s\left(e^{\pi i\tau}\right)=-R\left(-e^{-\pi i/(5\tau)}\right)</math> is the [[Rogers–Ramanujan continued fraction]]: :<math>\begin{align} s(q) &= \sqrt[5]{\tan\left(\frac{1}{2}\arctan\left(\frac{5}{2}\frac{\varphi^2\left(q^5\right)}{\varphi^2(q)}-\frac{1}{2}\right)\right)\cot^2\left(\frac{1}{2}\operatorname{arccot}\left(\frac{5}{2}\frac{\varphi^2\left(q^5\right)}{\varphi^2(q)}-\frac{1}{2}\right)\right)}\\ &= \cfrac{e^{-\pi i/(25\tau)}}{1-\cfrac{e^{-\pi i/(5\tau)}}{1+\cfrac{e^{-2\pi i/(5\tau)}}{1-\ddots}}} \end{align}</math> === [[Equianharmonic]] values === The mathematician [[Bruce Berndt]] found out further values<ref>{{cite journal |last1=Berndt |first1=Bruce C |last2=Rebák |first2=Örs |title=Explicit Values for Ramanujan's Theta Function {{not a typo|ϕ}}(q) |journal=Hardy-Ramanujan Journal |date=9 January 2022 |volume=44 |pages=8923 |doi=10.46298/hrj.2022.8923 |s2cid=245851672 |doi-access=free |arxiv=2112.11882 }}</ref> of the theta function: :<math>\begin{array}{lll} \varphi\left(\exp( -\sqrt{3}\,\pi)\right) &=& \pi^{-1}{\Gamma\left(\tfrac{4}{3}\right)}^{3/2}2^{-2/3}3^{13/8} \\ \varphi\left(\exp(-2\sqrt{3}\,\pi)\right) &=& \pi^{-1}{\Gamma\left(\tfrac{4}{3}\right)}^{3/2}2^{-2/3}3^{13/8}\cos(\tfrac{1}{24}\pi) \\ \varphi\left(\exp(-3\sqrt{3}\,\pi)\right) &=& \pi^{-1}{\Gamma\left(\tfrac{4}{3}\right)}^{3/2}2^{-2/3}3^{7/8}(\sqrt[3]{2}+1) \\ \varphi\left(\exp(-4\sqrt{3}\,\pi)\right) &=& \pi^{-1}{\Gamma\left(\tfrac{4}{3}\right)}^{3/2}2^{-5/3}3^{13/8}\Bigl(1+\sqrt{\cos(\tfrac{1}{12}\pi)}\Bigr) \\ \varphi\left(\exp(-5\sqrt{3}\,\pi)\right) &=& \pi^{-1}{\Gamma\left(\tfrac{4}{3}\right)}^{3/2}2^{-2/3}3^{5/8}\sin(\tfrac{1}{5}\pi)(\tfrac{2}{5}\sqrt[3]{100}+\tfrac{2}{5}\sqrt[3]{10}+\tfrac{3}{5}\sqrt{5}+1) \end{array}</math> === Further values === Many values of the theta function<ref>{{cite journal |last1=Yi |first1=Jinhee |title=Theta-function identities and the explicit formulas for theta-function and their applications |journal=Journal of Mathematical Analysis and Applications |date=15 April 2004 |volume=292 |issue=2 |pages=381–400 |doi=10.1016/j.jmaa.2003.12.009 |doi-access=free }}</ref> and especially of the shown phi function can be represented in terms of the gamma function: :<math>\begin{array}{lll} \varphi\left(\exp( -\sqrt{2}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{9}{8}\right){\Gamma\left(\tfrac{5}{4}\right)}^{-1/2}2^{7/8} \\ \varphi\left(\exp(-2\sqrt{2}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{9}{8}\right){\Gamma\left(\tfrac{5}{4}\right)}^{-1/2}2^{1/8}\Bigl(1+\sqrt{\sqrt{2}-1}\Bigr) \\ \varphi\left(\exp(-3\sqrt{2}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{9}{8}\right){\Gamma\left(\tfrac{5}{4}\right)}^{-1/2}2^{3/8}3^{-1/2}(\sqrt{3}+1)\sqrt{\tan(\tfrac{5}{24}\pi)} \\ \varphi\left(\exp(-4\sqrt{2}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{9}{8}\right){\Gamma\left(\tfrac{5}{4}\right)}^{-1/2}2^{-1/8}\Bigl(1+\sqrt[4]{2\sqrt{2}-2}\Bigr) \\ \varphi\left(\exp(-5\sqrt{2}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{9}{8}\right){\Gamma\left(\tfrac{5}{4}\right)}^{-1/2} \frac{1}{15}\,2^{3/8} \times \\ && \times \biggl[\sqrt[3]{5}\,\sqrt{10+2\sqrt{5}}\biggl(\sqrt[3]{5+\sqrt{2}+3\sqrt{3}}+\sqrt[3]{5+\sqrt{2}-3\sqrt{3}}\,\biggr)-\bigl(2-\sqrt{2}\,\bigr)\sqrt{25-10\sqrt{5}}\,\biggr] \\ \varphi\left(\exp( -\sqrt{6}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{5}{24}\right){\Gamma\left(\tfrac{5}{12}\right)}^{-1/2}2^{-13/24}3^{-1/8}\sqrt{\sin(\tfrac{5}{12}\pi)} \\ \varphi\left(\exp(-\tfrac{1}{2}\sqrt{6}\,\pi)\right) &=& \pi^{-1/2}\Gamma\left(\tfrac{5}{24}\right){\Gamma\left(\tfrac{5}{12}\right)}^{-1/2}2^{5/24}3^{-1/8}\sin(\tfrac{5}{24}\pi) \end{array}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)