Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Three utilities problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other graph-theoretic properties=== <math>K_{3,3}</math> is a [[triangle-free graph]], in which every vertex has exactly three neighbors (a [[cubic graph]]). Among all such graphs, it is the smallest. Therefore, it is the [[Cage (graph theory)|(3,4)-cage]], the smallest graph that has three neighbors per vertex and in which the shortest cycle has length four.{{r|tutte}} Like all other [[complete bipartite graph]]s, it is a [[well-covered graph]], meaning that every [[maximal independent set]] has the same size. In this graph, the only two maximal independent sets are the two sides of the bipartition, and are of equal sizes. <math>K_{3,3}</math> is one of only seven [[cubic graph|3-regular]] [[k-vertex-connected graph|3-connected]] well-covered graphs.{{r|cer93}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)