Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vandermonde matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inverse Vandermonde matrix == As explained above in Applications, the [[polynomial interpolation]] problem for <math>p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n</math>satisfying <math>p(x_0)=y_0, \ldots,p(x_n)=y_n</math> is equivalent to the matrix equation <math>Va = y</math>, which has the unique solution <math>a = V^{-1}y</math>. There are other known formulas which solve the interpolation problem, which must be equivalent to the unique <math>a = V^{-1}y</math>, so they must give explicit formulas for the inverse matrix <math>V^{-1}</math>. In particular, [[Lagrange polynomial|Lagrange interpolation]] shows that the columns of the inverse matrix <math display="block">V^{-1}= \begin{bmatrix} 1 & x_0 & \dots & x_0^n\\ \vdots & \vdots & &\vdots \\[.5em] 1 & x_n & \dots & x_n^n \end{bmatrix}^{-1}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)