Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===The constants ''e''<sub>1</sub>, ''e''<sub>2</sub> and ''e''<sub>3</sub>=== <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are usually used to denote the values of the <math>\wp</math>-function at the half-periods. <math display="block">e_1\equiv\wp\left(\frac{\omega_1}{2}\right)</math> <math display="block">e_2\equiv\wp\left(\frac{\omega_2}{2}\right)</math> <math display="block">e_3\equiv\wp\left(\frac{\omega_1+\omega_2}{2}\right)</math> They are pairwise distinct and only depend on the lattice <math>\Lambda</math> and not on its generators.<ref>{{citation| first=Rolf | last = Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin| at=p. 270|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are the roots of the cubic polynomial <math>4\wp(z)^3-g_2\wp(z)-g_3</math> and are related by the equation: <math display="block">e_1+e_2+e_3=0.</math> Because those roots are distinct the discriminant <math>\Delta</math> does not vanish on the upper half plane.<ref>{{citation| first=Tom M. |last = Apostol|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 13|isbn=0-387-90185-X|date=1976|language=German}}</ref> Now we can rewrite the differential equation: <math display="block">\wp'^2(z)=4(\wp(z)-e_1)(\wp(z)-e_2)(\wp(z)-e_3).</math> That means the half-periods are zeros of <math>\wp'</math>. The invariants <math>g_2</math> and <math>g_3</math> can be expressed in terms of these constants in the following way:<ref>{{citation|surname1=K. Chandrasekharan|title=Elliptic functions|publisher=Springer-Verlag|publication-place=Berlin|at=p. 33| isbn=0-387-15295-4|date=1985|language=German}}</ref> <math display="block">g_2 = -4 (e_1 e_2 + e_1 e_3 + e_2 e_3)</math> <math display="block">g_3 = 4 e_1 e_2 e_3</math> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are related to the [[modular lambda function]]: <math display="block">\lambda (\tau)=\frac{e_3-e_2}{e_1-e_2},\quad \tau=\frac{\omega_2}{\omega_1}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)