Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wien bridge oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Frequency determining network=== {{unreferenced section|date=September 2015}} :<math> H(s) = \frac { R_1 / (1 + sC_1 R_1) } {R_1 / (1 + sC_1 R_1) + R_2 + 1/(sC_2)} </math> :<math> H(s) = \frac { s C_2 R_1 } {(1 + s C_1 R_1) (s C_2 R_1 / (1 + sC_1 R_1) + s C_2 R_2 + 1 )} </math> :<math> H(s) = \frac { s C_2 R_1 } {s C_2 R_1 + (1 + s C_1 R_1) (s C_2 R_2 + 1 )} </math> :<math> H(s) = \frac { s C_2 R_1 } {C_1 C_2 R_1 R_2 s^2 + (C_2 R_1 + C_2 R_2 + C_1 R_1) s + 1 } </math> Let R=R<sub>1</sub>=R<sub>2</sub> and C=C<sub>1</sub>=C<sub>2</sub> :<math> H(s) = \frac { s C R } {C^2 R^2 s^2 + 3 C R s + 1 } </math> Normalize to ''CR''=1. :<math> H(s) = \frac { s } {s^2 + 3 s + 1 } </math> Thus the frequency determining network has a zero at 0 and poles at <math>-1.5\plusmn \frac{\sqrt{5}}{2}</math> or β2.6180 and β0.38197.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)