Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Y-Δ transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Demonstration== ===Δ-load to Y-load transformation equations=== [[Image:Wye-delta-2.svg|right|thumb|325px|Δ and Y circuits with the labels that are used in this article.]] To relate <math>\left\{R_\text{a}, R_\text{b}, R_\text{c}\right\}</math> from Δ to <math>\left\{R_1, R_2, R_3\right\}</math> from Y, the impedance between two corresponding nodes is compared. The impedance in either configuration is determined as if one of the nodes is disconnected from the circuit. The impedance between ''N''<sub>1</sub> and ''N''<sub>2</sub> with ''N''<sub>3</sub> disconnected in Δ: :<math>\begin{align} R_\Delta\left(N_1, N_2\right) &= R_\text{c} \parallel (R_\text{a} + R_\text{b}) \\[3pt] &= \frac{1}{\frac{1}{R_\text{c}} + \frac{1}{R_\text{a} + R_\text{b}}} \\[3pt] &= \frac{R_\text{c}\left(R_\text{a} + R_\text{b}\right)}{R_\text{a} + R_\text{b} + R_\text{c}} \end{align}</math> To simplify, let <math>R_\text{T}</math> be the sum of <math>\left\{R_\text{a}, R_\text{b}, R_\text{c}\right\}</math>. :<math> R_\text{T} = R_\text{a} + R_\text{b} + R_\text{c} </math> Thus, :<math>R_\Delta\left(N_1, N_2\right) = \frac{R_\text{c}(R_\text{a} + R_\text{b})}{R_\text{T}}</math> The corresponding impedance between N<sub>1</sub> and N<sub>2</sub> in Y is simple: :<math>R_\text{Y}\left(N_1, N_2\right) = R_1 + R_2</math> hence: :<math>R_1 + R_2 = \frac{R_\text{c}(R_\text{a} + R_\text{b})}{R_\text{T}}</math> (1) Repeating for <math>R(N_2,N_3)</math>: :<math>R_2 + R_3 = \frac{R_\text{a}(R_\text{b} + R_\text{c})}{R_\text{T}}</math> (2) and for <math>R\left(N_1, N_3\right)</math>: :<math>R_1 + R_3 = \frac{R_\text{b}\left(R_\text{a} + R_\text{c}\right)}{R_\text{T}}.</math> (3) From here, the values of <math>\left\{R_1, R_2, R_3\right\}</math> can be determined by linear combination (addition and/or subtraction). For example, adding (1) and (3), then subtracting (2) yields :<math>\begin{align} R_1 + R_2 + R_1 + R_3 - R_2 - R_3 &= \frac{R_\text{c}(R_\text{a} + R_\text{b})}{R_\text{T}} + \frac{R_\text{b}(R_\text{a} + R_\text{c})}{R_\text{T}} - \frac{R_\text{a}(R_\text{b} + R_\text{c})}{R_\text{T}} \\[3pt] {}\Rightarrow 2R_1 &= \frac{2R_\text{b}R_\text{c}}{R_\text{T}} \\[3pt] {}\Rightarrow R_1 &= \frac{R_\text{b}R_\text{c}}{R_\text{T}}. \end{align}</math> For completeness: :<math>R_1 = \frac{R_\text{b}R_\text{c}}{R_\text{T}}</math> (4) :<math>R_2 = \frac{R_\text{a}R_\text{c}}{R_\text{T}}</math> (5) :<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}</math> (6) ===Y-load to Δ-load transformation equations=== Let :<math>R_\text{T} = R_\text{a} + R_\text{b} + R_\text{c}</math>. We can write the Δ to Y equations as :<math>R_1 = \frac{R_\text{b}R_\text{c}}{R_\text{T}} </math> (1) :<math>R_2 = \frac{R_\text{a}R_\text{c}}{R_\text{T}} </math> (2) :<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}. </math> (3) Multiplying the pairs of equations yields :<math>R_1 R_2 = \frac{R_\text{a}R_\text{b}R_\text{c}^2 }{R_\text{T}^2}</math> (4) :<math>R_1 R_3 = \frac{R_\text{a}R_\text{b}^2 R_\text{c}}{R_\text{T}^2}</math> (5) :<math>R_2 R_3 = \frac{R_\text{a}^2 R_\text{b}R_\text{c}}{R_\text{T}^2}</math> (6) and the sum of these equations is :<math>R_1 R_2 + R_1 R_3 + R_2 R_3 = \frac{ R_\text{a}R_\text{b}R_\text{c}^2 + R_\text{a}R_\text{b}^2R_\text{c} + R_\text{a}^2R_\text{b}R_\text{c}} {R_\text{T}^2} </math> (7) Factor <math>R_\text{a}R_\text{b}R_\text{c}</math> from the right side, leaving <math>R_\text{T}</math> in the numerator, canceling with an <math>R_\text{T}</math> in the denominator. :<math>\begin{align} R_1 R_2 + R_1 R_3 + R_2 R_3 &={} \frac{ \left(R_\text{a}R_\text{b}R_\text{c}\right) \left(R_\text{a} + R_\text{b} + R_\text{c}\right) }{R_\text{T}^2} \\ &={} \frac{R_\text{a}R_\text{b}R_\text{c}}{R_\text{T}} \end{align}</math> (8) Note the similarity between (8) and {(1), (2), (3)} Divide (8) by (1) :<math>\begin{align} \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1} &={} \frac{R_\text{a}R_\text{b}R_\text{c}}{R_\text{T}} \frac{R_\text{T}}{R_\text{b}R_\text{c}} \\ &={} R_\text{a}, \end{align}</math> which is the equation for <math>R_\text{a}</math>. Dividing (8) by (2) or (3) (expressions for <math>R_2</math> or <math>R_3</math>) gives the remaining equations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)