Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
24-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Reciprocal constructions from 8-cell and 16-cell ==== The 8 integer vertices (±1, 0, 0, 0) are the vertices of a regular [[16-cell]], and the 16 half-integer vertices (±{{sfrac|1|2}}, ±{{sfrac|1|2}}, ±{{sfrac|1|2}}, ±{{sfrac|1|2}}) are the vertices of its dual, the [[tesseract]] (8-cell).{{Sfn|Egan|2021|loc=animation of a rotating 24-cell|ps=: {{color|red}} half-integer vertices (tesseract), {{Font colour|fg=yellow|bg=black|text=yellow}} and {{color|black}} integer vertices (16-cell).}} The tesseract gives Gosset's construction{{Sfn|Coxeter|1973|p=150|loc=Gosset}} of the 24-cell, equivalent to cutting a tesseract into 8 [[cubic pyramid]]s, and then attaching them to the facets of a second tesseract. The analogous construction in 3-space gives the [[rhombic dodecahedron]] which, however, is not regular.{{Efn|[[File:R1-cube.gif|thumb|150px|Construction of a [[rhombic dodecahedron]] from a cube.]]This animation shows the construction of a [[rhombic dodecahedron]] from a cube, by inverting the center-to-face pyramids of a cube. Gosset's construction of a 24-cell from a tesseract is the 4-dimensional analogue of this process, inverting the center-to-cell pyramids of an 8-cell (tesseract).{{Sfn|Coxeter|1973|p=150|loc=Gosset}}|name=rhombic dodecahedron from a cube}} The 16-cell gives the reciprocal construction of the 24-cell, Cesaro's construction,{{Sfn|Coxeter|1973|p=148|loc=§8.2. Cesaro's construction for {3, 4, 3}.}} equivalent to rectifying a 16-cell (truncating its corners at the mid-edges, as described [[#Squares|above]]). The analogous construction in 3-space gives the [[cuboctahedron]] (dual of the rhombic dodecahedron) which, however, is not regular. The tesseract and the 16-cell are the only regular 4-polytopes in the 24-cell.{{Sfn|Coxeter|1973|p=302|loc=Table VI(ii) II={3,4,3}, Result column}} We can further divide the 16 half-integer vertices into two groups: those whose coordinates contain an even number of minus (−) signs and those with an odd number. Each of these groups of 8 vertices also define a regular 16-cell. This shows that the vertices of the 24-cell can be grouped into three disjoint sets of eight with each set defining a regular 16-cell, and with the complement defining the dual tesseract.{{Sfn|Coxeter|1973|pp=149-150|loc=§8.22. see illustrations Fig. 8.2<small>A</small> and Fig 8.2<small>B</small>|p=|ps=}} This also shows that the symmetries of the 16-cell form a subgroup of index 3 of the symmetry group of the 24-cell.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)