Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Absolute magnitude
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== More advanced models ==== Because Solar System bodies are never perfect diffuse reflectors, astronomers use different models to predict apparent magnitudes based on known or assumed properties of the body.<ref name="Karttunen2016"/> For planets, approximations for the correction term <math>-2.5\log_{10}{q(\alpha)}</math> in the formula for {{mvar|m}} have been derived empirically, to match [[phase curve (astronomy)|observations at different phase angles]]. The approximations recommended by the [[Astronomical Almanac]]<ref name="Mallama_and_Hilton"/> are (with <math>\alpha</math> in degrees): {| class="wikitable" |- ! Planet ! Referenced calculation<ref name="IMCCE">{{cite web | title=Encyclopedia - the brightest bodies | website=IMCCE | url=https://promenade.imcce.fr/en/pages5/572.html | access-date=2023-05-29}}</ref> ! <math>H</math> ! Approximation for <math>-2.5\log_{10}{q(\alpha)}</math> |- | [[Mercury (planet)|Mercury]] | β0.4 | β0.613 | <math>+6.328\times10^{-2}\alpha - 1.6336\times10^{-3}\alpha^{2}+3.3644\times10^{-5}\alpha^{3}-3.4265\times10^{-7}\alpha^{4}+1.6893\times10^{-9}\alpha^{5}-3.0334\times10^{-12}\alpha^{6}</math> |- | [[Venus (planet)|Venus]] | β4.4 | β4.384 | * <math>-1.044\times10^{-3}\alpha+3.687\times10^{-4}\alpha^{2}-2.814\times10^{-6}\alpha^{3}+8.938\times10^{-9}\alpha^{4}</math> (for <math>0^{\circ}<\alpha \le 163.7^{\circ}</math>) * <math>+240.44228-2.81914\alpha+8.39034\times10^{-3}\alpha^{2}</math> (for <math>163.7^{\circ}<\alpha<179^{\circ}</math>) |- | [[Earth]] | β | β3.99 |<math>-1.060\times10^{-3}\alpha+2.054\times10^{-4}\alpha^{2}</math> |- | [[Moon]]<ref>{{Cite book|first=A.N.|last=Cox|year=2000|title=Allen's Astrophysical Quantities, fourth edition|publisher=Springer-Verlag|pages=310}}</ref> | 0.2 | +0.28 | * <math>+2.9994\times10^{-2}\alpha-1.6057\times10^{-4}\alpha^{2}+3.1543\times10^{-6}\alpha^{3}-2.0667\times10^{-8}\alpha^{4}+6.2553\times10^{-11}\alpha^{5}</math> (for <math>\alpha\le150^{\circ}</math>, before full Moon) * <math>+3.3234\times10^{-2}\alpha-3.0725\times10^{-4}\alpha^{2}+6.1575\times10^{-6}\alpha^{3}-4.7723\times10^{-8}\alpha^{4}+1.4681\times10^{-10}\alpha^{5}</math> (for <math>\alpha\le150^{\circ}</math>, after full Moon) |- | [[Mars (planet)|Mars]] | β1.5 | β1.601 | * <math>+2.267\times10^{-2}\alpha-1.302\times10^{-4}\alpha^{2}</math> (for <math>0^{\circ}<\alpha\le50^{\circ}</math>) * <math>+1.234-2.573\times10^{-2}\alpha+3.445\times10^{-4}\alpha^{2}</math> (for <math>50^{\circ}<\alpha\le120^{\circ}</math>) |- | [[Jupiter (planet)|Jupiter]] | β9.4 | β9.395 | * <math>-3.7\times10^{-4}\alpha+6.16\times10^{-4}\alpha^{2}</math> (for <math>\alpha\le12^{\circ}</math>) * <math>-0.033-2.5\log_{10}{\left(1-1.507\left(\frac{\alpha}{180^{\circ}}\right)-0.363\left(\frac{\alpha}{180^{\circ}}\right)^{2}-0.062\left(\frac{\alpha}{180^{\circ}}\right)^{3}+2.809\left(\frac{\alpha}{180^{\circ}}\right)^{4}-1.876\left(\frac{\alpha}{180^{\circ}}\right)^{5}\right)}</math> (for <math>\alpha>12^{\circ}</math>) |- | [[Saturn (planet)|Saturn]] | β9.7 | β8.914 | * <math>-1.825\sin{\left(\beta\right)}+2.6\times10^{-2}\alpha-0.378\sin{\left(\beta\right)}e^{-2.25\alpha}</math> (for planet and rings, <math>\alpha<6.5^{\circ}</math> and <math>\beta<27^{\circ}</math>) * <math>-0.036-3.7\times10^{-4}\alpha+6.16\times10^{-4}\alpha^{2}</math> (for the globe alone, <math>\alpha\le6^{\circ}</math>) * <math>+0.026+2.446\times10^{-4}\alpha+2.672\times10^{-4}\alpha^{2}-1.505\times10^{-6}\alpha^{3}+4.767\times10^{-9}\alpha^{4}</math> (for the globe alone, <math>6^{\circ}<\alpha<150^{\circ}</math>) |- | [[Uranus (planet)|Uranus]] | β7.2 | β7.110 |<math>-8.4\times10^{-4}\phi'+6.587\times10^{-3}\alpha+1.045\times10^{-4}\alpha^{2}</math> (for <math>\alpha < 3.1^{\circ}</math>) |- | [[Neptune (planet)|Neptune]] | β6.9 | β7.00 |<math>+7.944\times10^{-3}\alpha+9.617\times10^{-5}\alpha^{2}</math> (for <math>\alpha < 133^{\circ}</math> and <math>t > 2000.0</math>) |} {{Multiple image | header = The different halves of the Moon, as seen from Earth | image1 = Daniel Hershman - march moon (by).jpg | caption1 = Moon at first quarter | image2 = Waning gibbous moon near last quarter - 23 Sept. 2016.png | caption2 = Moon at last quarter }} Here <math>\beta</math> is the effective inclination of [[Saturn's rings]] (their tilt relative to the observer), which as seen from Earth varies between 0Β° and 27Β° over the course of one Saturn orbit, and <math>\phi'</math> is a small correction term depending on Uranus' sub-Earth and sub-solar latitudes. <math>t</math> is the [[Common Era]] year. Neptune's absolute magnitude is changing slowly due to seasonal effects as the planet moves along its 165-year orbit around the Sun, and the approximation above is only valid after the year 2000. For some circumstances, like <math>\alpha \ge 179^{\circ}</math> for Venus, no observations are available, and the phase curve is unknown in those cases. The formula for the Moon is only applicable to the [[near side of the Moon]], the portion that is visible from the Earth. Example 1: On 1 January 2019, [[Venus (planet)|Venus]] was <math>d_{BS}=0.719\text{ AU}</math> from the Sun, and <math>d_{BO} = 0.645\text{ AU}</math> from Earth, at a phase angle of <math>\alpha=93.0^{\circ}</math> (near quarter phase). Under full-phase conditions, Venus would have been visible at <math>m=-4.384+5\log_{10}{\left(0.719 \cdot 0.645\right)}=-6.09.</math> Accounting for the high phase angle, the correction term above yields an actual apparent magnitude of <math display="block">m = -6.09 + \left(-1.044 \times 10^{-3} \cdot 93.0 + 3.687\times10^{-4} \cdot 93.0^{2} - 2.814 \times 10^{-6} \cdot 93.0^{3} + 8.938 \times 10^{-9} \cdot 93.0^{4}\right) = -4.59.</math> This is close to the value of <math>m=-4.62</math> predicted by the Jet Propulsion Laboratory.<ref name="JPLHorizonsVenus"/> Example 2: At [[first quarter|first quarter phase]], the approximation for the Moon gives <math display="inline">-2.5\log_{10}{q(90^{\circ})}=2.71.</math> With that, the apparent magnitude of the Moon is <math display="inline">m = +0.28+5\log_{10}{\left(1\cdot0.00257\right)}+2.71= -9.96,</math> close to the expected value of about <math>-10.0</math>. At [[last quarter]], the Moon is about 0.06 mag fainter than at first quarter, because that part of its surface has a lower albedo. Earth's [[albedo]] varies by a factor of 6, from 0.12 in the cloud-free case to 0.76 in the case of [[altostratus clouds|altostratus cloud]]. The absolute magnitude in the table corresponds to an albedo of 0.434. Due to the variability of the [[weather]], Earth's apparent magnitude cannot be predicted as accurately as that of most other planets.<ref name="Mallama_and_Hilton"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)