Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Affine transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Affine maps== An affine map <math>f\colon\mathcal{A} \to \mathcal{B}</math> between two [[affine space]]s is a map on the points that acts [[Linear transformation|linearly]] on the vectors (that is, the vectors between points of the space). In symbols, ''<math>f</math>'' determines a linear transformation ''<math>\varphi</math>'' such that, for any pair of points <math>P, Q \in \mathcal{A}</math>: :<math>\overrightarrow{f(P)~f(Q)} = \varphi(\overrightarrow{PQ})</math> or :<math>f(Q)-f(P) = \varphi(Q-P)</math>. We can interpret this definition in a few other ways, as follows. If an origin <math>O \in \mathcal{A}</math> is chosen, and <math>B</math> denotes its image <math>f(O) \in \mathcal{B}</math>, then this means that for any vector <math>\vec{x}</math>: :<math>f\colon (O+\vec{x}) \mapsto (B+\varphi(\vec{x}))</math>. If an origin <math>O' \in \mathcal{B}</math> is also chosen, this can be decomposed as an affine transformation <math>g\colon \mathcal{A} \to \mathcal{B}</math> that sends <math>O \mapsto O'</math>, namely :<math>g\colon (O+\vec{x}) \mapsto (O'+\varphi(\vec{x}))</math>, followed by the translation by a vector <math>\vec{b} = \overrightarrow{O'B}</math>. The conclusion is that, intuitively, <math>f</math> consists of a translation and a linear map. ===Alternative definition=== Given two [[affine space]]s <math>\mathcal{A}</math> and <math>\mathcal{B}</math>, over the same field, a function <math>f\colon \mathcal{A} \to \mathcal{B}</math> is an affine map [[if and only if]] for every family <math>\{(a_i, \lambda_i)\}_{i\in I}</math> of weighted points in <math>\mathcal{A}</math> such that : <math>\sum_{i\in I}\lambda_i = 1</math>, we have<ref> {{cite book|author1=Schneider, Philip K. |author2=Eberly, David H.|title=Geometric Tools for Computer Graphics|publisher=Morgan Kaufmann|year=2003|isbn=978-1-55860-594-7|page=98|url=https://books.google.com/books?id=3Q7HGBx1uLIC&pg=PA98}}</ref> : <math>f\left(\sum_{i\in I}\lambda_i a_i\right)=\sum_{i\in I}\lambda_i f(a_i)</math>. In other words, <math>f</math> preserves [[Barycentric_coordinate_system|barycenters]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)