Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algorithmic probability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == Solomonoff invented the concept of algorithmic probability with its associated invariance theorem around 1960,<ref>Solomonoff, R., [http://world.std.com/~rjs/barc97.pdf "The Discovery of Algorithmic Probability"], ''Journal of Computer and System Sciences'', Vol. 55, No. 1, pp. 73-88, August 1997.</ref> publishing a report on it: "A Preliminary Report on a General Theory of Inductive Inference."<ref>Solomonoff, R., "[http://world.std.com/~rjs/z138.pdf A Preliminary Report on a General Theory of Inductive Inference]", Report V-131, Zator Co., Cambridge, Ma. (Nov. 1960 revision of the Feb. 4, 1960 report).</ref> He clarified these ideas more fully in 1964 with "A Formal Theory of Inductive Inference," Part I<ref>Solomonoff, R., "[http://world.std.com/~rjs/1964pt1.pdf A Formal Theory of Inductive Inference, Part I]". ''Information and Control'', Vol 7, No. 1 pp 1-22, March 1964.</ref> and Part II.<ref>Solomonoff, R., "[http://world.std.com/~rjs/1964pt2.pdf A Formal Theory of Inductive Inference, Part II]" ''Information and Control'', Vol 7, No. 2 pp 224–254, June 1964.</ref> In terms of practical implications and applications, the study of bias in empirical data related to Algorithmic Probability emerged in the early 2010s.<ref>{{cite journal |last1=Soler-Toscano |first1=Fernando |last2=Zenil |first2=Hector |last3=Delahaye |first3=Jean-Paul |last4=Gauvrit |first4=Nicolas |title=Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines |journal=PLOS ONE |volume=9 |issue=5 |pages=74–85 |year=2014 |doi=10.1371/journal.pone.0096223 |doi-access=free |pmid=24787763 |pmc=4013017 |bibcode=2014PLoSO...996223S }}</ref> The bias found led to methods that combined algorithmic probability with perturbation analysis in the context of [[Exploratory causal analysis|causal analysis]]<ref>{{cite book |last1=Zenil |first1=Hector |last2=Kiani |first2=Narsis A. |last3=Tegnér |first3=Jesper |title=Algorithmic Information Dynamics: A Computational Approach to Causality with Applications to Living Systems |location=Cambridge |publisher=Cambridge University Press |year=2023 }}</ref><ref>{{cite journal |last1=Zenil |first1=H. |last2=Kiani |first2=N. A. |last3=Abrahão |first3=F. S. |last4=Tegnér |first4=J. N. |title=Algorithmic Information Dynamics |journal=Scholarpedia |volume=15 |issue=7 |year=2020 |pages=53143 |doi=10.4249/scholarpedia.53143 |doi-access=free |bibcode=2020SchpJ..1553143Z }}</ref><ref>{{cite journal |last1=Zenil |first1=Hector |last2=Kiani |first2=Narsis A. |last3=Zea |first3=Allan A. |last4=Tegnér |first4=Jesper |title=Causal deconvolution by algorithmic generative models |journal=Nature Machine Intelligence |volume=1 |issue=1 |year=2019 |pages=58–66 |doi=10.1038/s42256-018-0005-0 }}</ref> and non-differentiable [[Machine Learning]]<ref name="HernandezOrozco2021">{{Cite journal|last1=Hernández-Orozco|first1=Santiago|last2=Zenil|first2=Hector|last3=Riedel|first3=Jürgen|last4=Uccello|first4=Adam|last5=Kiani|first5=Narsis A.|last6=Tegnér|first6=Jesper|date=2021|title=Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces|journal=Frontiers in Artificial Intelligence|volume=3|pages=1–20|doi=10.3389/frai.2020.567356|doi-access=free |pmid=33733213 |pmc=7944352 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)