Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autocorrelation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Wiener–Khinchin theorem==== The [[Wiener–Khinchin theorem]] relates the autocorrelation function <math>\operatorname{R}_{XX}</math> to the [[spectral density|power spectral density]] <math>S_{XX}</math> via the [[Fourier transform]]: <math display=block>\operatorname{R}_{XX}(\tau) = \int_{-\infty}^\infty S_{XX}(f) e^{i 2 \pi f \tau} \, {\rm d}f</math> <math display=block>S_{XX}(f) = \int_{-\infty}^\infty \operatorname{R}_{XX}(\tau) e^{- i 2 \pi f \tau} \, {\rm d}\tau .</math> For real-valued functions, the symmetric autocorrelation function has a real symmetric transform, so the [[Wiener–Khinchin theorem]] can be re-expressed in terms of real cosines only: <math display=block>\operatorname{R}_{XX}(\tau) = \int_{-\infty}^\infty S_{XX}(f) \cos(2 \pi f \tau) \, {\rm d}f</math> <math display=block>S_{XX}(f) = \int_{-\infty}^\infty \operatorname{R}_{XX}(\tau) \cos(2 \pi f \tau) \, {\rm d}\tau .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)