Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autoregressive model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Yule–Walker equations=== <!-- this heading is linked from other articles --> The Yule–Walker equations, named for [[Udny Yule]] and [[Gilbert Walker (physicist)|Gilbert Walker]],<ref>Yule, G. Udny (1927) [http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&O=NUMM-56031 "On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers"] {{Webarchive|url=https://web.archive.org/web/20110514094546/http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&O=NUMM-56031 |date=2011-05-14 }}, ''[[Philosophical Transactions of the Royal Society]] of London'', Ser. A, Vol. 226, 267–298.]</ref><ref>Walker, Gilbert (1931) [http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&O=NUMM-56224 "On Periodicity in Series of Related Terms"] {{Webarchive|url=https://web.archive.org/web/20110607170511/http://visualiseur.bnf.fr/Visualiseur?Destination=Gallica&O=NUMM-56224 |date=2011-06-07 }}, ''[[Proceedings of the Royal Society]] of London'', Ser. A, Vol. 131, 518–532.</ref> are the following set of equations.<ref>{{cite book |last=Theodoridis |first=Sergios |title=Machine Learning: A Bayesian and Optimization Perspective |publisher=Academic Press, 2015 |chapter=Chapter 1. Probability and Stochastic Processes |pages=9–51 |isbn=978-0-12-801522-3 |date=2015-04-10 }}</ref> :<math>\gamma_m = \sum_{k=1}^p \varphi_k \gamma_{m-k} + \sigma_\varepsilon^2\delta_{m,0},</math> where {{nowrap|1=''m'' = 0, …, ''p''}}, yielding {{nowrap|''p'' + 1}} equations. Here <math>\gamma_m</math> is the autocovariance function of X<sub>t</sub>, <math>\sigma_\varepsilon</math> is the standard deviation of the input noise process, and <math>\delta_{m,0}</math> is the [[Kronecker delta function]]. Because the last part of an individual equation is non-zero only if {{nowrap|1=''m'' = 0}}, the set of equations can be solved by representing the equations for {{nowrap|''m'' > 0}} in matrix form, thus getting the equation :<math>\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_p \\ \end{bmatrix} = \begin{bmatrix} \gamma_0 & \gamma_{-1} & \gamma_{-2} & \cdots \\ \gamma_1 & \gamma_0 & \gamma_{-1} & \cdots \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ \gamma_{p-1} & \gamma_{p-2} & \gamma_{p-3} & \cdots \\ \end{bmatrix} \begin{bmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \\ \vdots \\ \varphi_{p} \\ \end{bmatrix} </math> which can be solved for all <math>\{\varphi_m; m=1,2, \dots ,p\}.</math> The remaining equation for ''m'' = 0 is :<math>\gamma_0 = \sum_{k=1}^p \varphi_k \gamma_{-k} + \sigma_\varepsilon^2 ,</math> which, once <math>\{\varphi_m ; m=1,2, \dots ,p \}</math> are known, can be solved for <math>\sigma_\varepsilon^2 .</math> An alternative formulation is in terms of the [[autocorrelation function]]. The AR parameters are determined by the first ''p''+1 elements <math>\rho(\tau)</math> of the autocorrelation function. The full autocorrelation function can then be derived by recursively calculating <ref name=Storch>{{Cite book | publisher = Cambridge University Press | isbn = 0-521-01230-9 | last = Von Storch | first = Hans | first2=Francis W. |last2=Zwiers | title = Statistical analysis in climate research | year = 2001 | doi = 10.1017/CBO9780511612336 }}{{Page needed|date=March 2011}}</ref> : <math>\rho(\tau) = \sum_{k=1}^p \varphi_k \rho(k-\tau)</math> Examples for some Low-order AR(''p'') processes * ''p''=1 ** <math>\gamma_1 = \varphi_1 \gamma_0</math> ** Hence <math>\rho_1 = \gamma_1 / \gamma_0 = \varphi_1</math> * ''p''=2 ** The Yule–Walker equations for an AR(2) process are **: <math>\gamma_1 = \varphi_1 \gamma_0 + \varphi_2 \gamma_{-1}</math> **: <math>\gamma_2 = \varphi_1 \gamma_1 + \varphi_2 \gamma_0</math> *** Remember that <math>\gamma_{-k} = \gamma_k</math> *** Using the first equation yields <math>\rho_1 = \gamma_1 / \gamma_0 = \frac{\varphi_1}{1-\varphi_2}</math> *** Using the recursion formula yields <math>\rho_2 = \gamma_2 / \gamma_0 = \frac{\varphi_1^2 - \varphi_2^2 + \varphi_2}{1 - \varphi_2}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)