Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Axion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Maxwell's equations with axion modifications === [[Pierre Sikivie]] computed how [[Maxwell's equations]] are modified in the presence of an axion in 1983.<ref>{{cite journal |last1=Sikivie |first1=P. |title=Experimental Tests of the 'Invisible' Axion |date=17 October 1983 |journal=Physical Review Letters |volume=51 |issue=16 |page=1413 |doi=10.1103/physrevlett.51.1415 |bibcode=1983PhRvL..51.1415S}}</ref> He showed that these axions could be detected on Earth by converting them to photons, using a strong magnetic field, motivating a number of experiments. For example, the [[Axion Dark Matter Experiment]] attempts to convert axion dark matter to microwave photons, the [[CERN Axion Solar Telescope]] attempt to convert axions that are produced in the Sun's core to X-rays, and other experiments search for axions produced in laser light.<ref>{{cite web |title=OSQAR |url=http://home.cern/about/experiments/osqar |publisher=CERN |date=2017 |access-date=3 October 2017}}</ref> As of the early 2020s, there are dozens of proposed or ongoing experiments searching for axion dark matter.<ref>{{cite arXiv |title=Axion Dark Matter |date=2022 |eprint=2203.14923 |last1=Adams |first1=C. B. |last2=Aggarwal |first2=N. |last3=Agrawal |first3=A. |last4=Balafendiev |first4=R. |last5=Bartram |first5=C. |last6=Baryakhtar |first6=M. |last7=Bekker |first7=H. |last8=Belov |first8=P. |last9=Berggren |first9=K. K. |last10=Berlin |first10=A. |last11=Boutan |first11=C. |last12=Bowring |first12=D. |last13=Budker |first13=D. |last14=Caldwell |first14=A. |last15=Carenza |first15=P. |last16=Carosi |first16=G. |last17=Cervantes |first17=R. |last18=Chakrabarty |first18=S. S. |last19=Chaudhuri |first19=S. |last20=Chen |first20=T. Y. |last21=Cheong |first21=S. |last22=Chou |first22=A. |last23=Co |first23=R. T. |last24=Conrad |first24=J. |last25=Croon |first25=D. |last26=D'Agnolo |first26=R. T. |last27=Demarteau |first27=M. |last28=DePorzio |first28=N. |last29=Descalle |first29=M. |last30=Desch |first30=K. |class=hep-ex |display-authors=1 }}</ref> Treating the reduced Planck constant <math>\hbar</math>, speed of light <math>c</math>, and permittivity of free space <math>\varepsilon_0</math> all equivalent to 1, the electrodynamic equations are: : {| class="wikitable" style="text-align: center;" |- ! scope="col" style="width: 15em;" | Name ! scope="col" | Equations |- ! scope="row" | Gauss's law | <math> \nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a </math> |- ! scope="row" | Gauss's law for magnetism | <math> \nabla \cdot \mathbf{B} = 0 </math> |- ! scope="row" | Faraday's law | <math> \nabla \times \mathbf{E} = - \dot{ \mathbf{B} } </math> |- ! scope="row" | Ampère–Maxwell law | <math>\quad \nabla \times \mathbf{B} = \dot{\mathbf{E}} + \mathbf{J} + g_{a\gamma\gamma} \left( \dot{a} \mathbf{B} - \mathbf{E} \times \nabla a \right) \quad</math> |- ! scope="row" | Axion field's equation of motion | <math> \ddot{a} - \nabla^2 a + m_a^2 a = -g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B} </math> |} Above, a dot above a variable denotes its time derivative; the dot spaced between variables is the [[vector dot product]]; the factor <math> g_{a\gamma\gamma} </math> is the axion-to-photon coupling constant. Alternative forms of these equations have been proposed, which imply completely different physical signatures. For example, Visinelli wrote a set of equations that imposed duality symmetry, assuming the existence of [[magnetic monopole]]s.<ref>{{cite journal |last=Visinelli |first=L. |year=2013 |title=Axion-electromagnetic waves |journal=Modern Physics Letters A |volume=28 |number=35 |page=1350162 |doi=10.1142/S0217732313501629 |arxiv=1401.0709 |bibcode=2013MPLA...2850162V |s2cid=119221244 }}</ref> However, these alternative formulations are less theoretically motivated, and in many cases cannot even be derived from an [[action (physics)|action]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)