Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Basis (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example ==== In the study of [[Fourier series]], one learns that the functions {{math|1={1} βͺ { sin(''nx''), cos(''nx'') : ''n'' = 1, 2, 3, ... }<nowiki/>}} are an "orthogonal basis" of the (real or complex) vector space of all (real or complex valued) functions on the interval [0, 2Ο] that are square-integrable on this interval, i.e., functions ''f'' satisfying <math display="block">\int_0^{2\pi} \left|f(x)\right|^2\,dx < \infty.</math> The functions {{math|1={1} βͺ { sin(''nx''), cos(''nx'') : ''n'' = 1, 2, 3, ... }<nowiki/>}} are linearly independent, and every function ''f'' that is square-integrable on [0, 2Ο] is an "infinite linear combination" of them, in the sense that <math display="block">\lim_{n\to\infty} \int_0^{2\pi} \biggl|a_0 + \sum_{k=1}^n \left(a_k\cos\left(kx\right)+b_k\sin\left(kx\right)\right)-f(x)\biggr|^2 dx = 0</math> for suitable (real or complex) coefficients ''a''<sub>''k''</sub>, ''b''<sub>''k''</sub>. But many<ref>Note that one cannot say "most" because the cardinalities of the two sets (functions that can and cannot be represented with a finite number of basis functions) are the same.</ref> square-integrable functions cannot be represented as ''finite'' linear combinations of these basis functions, which therefore ''do not'' comprise a Hamel basis. Every Hamel basis of this space is much bigger than this merely countably infinite set of functions. Hamel bases of spaces of this kind are typically not useful, whereas [[orthonormal bases]] of these spaces are essential in [[Fourier analysis]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)