Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bertrand's postulate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== * {{Citation | author=P. Erdลs | author-link=Paul Erdลs | title=A Theorem of Sylvester and Schur | journal=[[Journal of the London Mathematical Society]] | volume=9 | issue=4 | pages=282โ288 | year=1934 | doi=10.1112/jlms/s1-9.4.282 }} * {{Citation | doi=10.3792/pja/1195570997 | author=Jitsuro Nagura | title=On the interval containing at least one prime number | journal=Proc. Japan Acad. | volume=28 | issue=4 | pages=177โ181 | year=1952| doi-access=free }} * Chris Caldwell, [http://primes.utm.edu/glossary/page.php?sort=BertrandsPostulate ''Bertrand's postulate''] at [[Prime Pages]] glossary. * {{Citation | author=H. Ricardo | title=Goldbach's Conjecture Implies Bertrand's Postulate | url = https://www.researchgate.net/publication/280599894 | journal=Amer. Math. Monthly | volume=112 | year=2005 | page=492 }} * {{cite book | author=Hugh L. Montgomery | author-link=Hugh Montgomery (mathematician) |author2=Robert C. Vaughan |author-link2=Robert Charles Vaughan (mathematician) | title=Multiplicative number theory I. Classical theory | series=Cambridge tracts in advanced mathematics | volume=97 | year=2007 | isbn=978-0-521-84903-6 | page=49 | publisher=Cambridge Univ. Press | location=Cambridge}} * {{Citation | author=J. Sondow |title=Ramanujan primes and Bertrand's postulate |journal=Amer. Math. Monthly |volume=116 |issue=7 |year=2009 |pages=630โ635 |arxiv=0907.5232 |doi=10.4169/193009709x458609}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)