Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Block matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiplication=== It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "[[Conformable matrix|conformable]] partitions"<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=A partitioning as in Theorem 1.9.4 is called a ''conformable partition'' of ''A'' and ''B''.}}</ref> between two matrices <math>A</math> and <math>B</math> such that all submatrix products that will be used are defined.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=36 |edition=7th |quote=...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.}}</ref> {{Cquote | quote = Two matrices <math>A</math> and <math>B</math> are said to be partitioned conformally for the product <math>AB</math>, when <math>A</math> and <math>B</math> are partitioned into submatrices and if the multiplication <math>AB</math> is carried out treating the submatrices as if they are scalars, but keeping the order, and when all products and sums of submatrices involved are defined. | author = Arak M. Mathai and Hans J. Haubold | source = ''Linear Algebra: A Course for Physicists and Engineers''<ref>{{Cite book |last1=Mathai |first1=Arakaparampil M. |title=Linear Algebra: a course for physicists and engineers |last2=Haubold |first2=Hans J. |date=2017 |publisher=De Gruyter |isbn=978-3-11-056259-0 |series=De Gruyter textbook |location=Berlin Boston |pages=162}}</ref> }} Let <math>A</math> be the matrix defined in {{section link||Transpose}}, and let <math>B</math> be the matrix defined in {{section link||Addition}}. Then the matrix product :<math> C = AB </math> can be performed blockwise, yielding <math>C</math> as an <math>(p \times s)</math> matrix. The matrices in the resulting matrix <math>C</math> are calculated by multiplying: :<math> C_{ij} = \sum_{k=1}^{q} A_{ik}B_{kj}. </math><ref name=":3">{{Cite book |last=Johnston |first=Nathaniel |title=Introduction to linear and matrix algebra |date=2021 |publisher=Springer Nature |isbn=978-3-030-52811-9 |location=Cham, Switzerland |pages=30,425}}</ref> Or, using the [[Einstein notation]] that implicitly sums over repeated indices: :<math> C_{ij} = A_{ik}B_{kj}. </math> Depicting <math>C</math> as a matrix, we have :<math>C = AB = \begin{bmatrix} \sum_{i=1}^{q} A_{1i}B_{i1} & \sum_{i=1}^{q} A_{1i}B_{i2} & \cdots & \sum_{i=1}^{q} A_{1i}B_{is} \\ \sum_{i=1}^{q} A_{2i}B_{i1} & \sum_{i=1}^{q} A_{2i}B_{i2} & \cdots & \sum_{i=1}^{q} A_{2i}B_{is} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{q} A_{pi}B_{i1} & \sum_{i=1}^{q} A_{pi}B_{i2} & \cdots & \sum_{i=1}^{q} A_{pi}B_{is} \end{bmatrix}</math>.<ref name=":2" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)