Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical normal form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Canonical and non-canonical consequences of NOR gates=== A set of 8 NOR gates, if their inputs are all combinations of the direct and complement forms of the 3 input variables ''ci, x,'' and ''y'', always produce minterms, never maxterms—that is, of the 8 gates required to process all combinations of 3 input variables, only one has the output value 1. That's because a NOR gate, despite its name, could better be viewed (using De Morgan's law) as the AND of the complements of its input signals. The reason this is not a problem is the duality of minterms and maxterms, i.e. each maxterm is the complement of the like-indexed minterm, and vice versa. In the minterm example above, we wrote <math>u(ci, x, y) = m_1 + m_2 + m_4 + m_7</math> but to perform this with a 4-input NOR gate we need to restate it as a product of sums (PoS), where the sums are the opposite maxterms. That is, :<math>u(ci, x, y) = \mathrm{AND}(M_0,M_3,M_5,M_6) = \mathrm{NOR}(m_0,m_3,m_5,m_6).</math> {| style="margin: 1em auto 1em auto" |+ '''Truth tables''' | {| class="wikitable" style="margin: 1em auto 1em auto" !width="50"|ci !width="50"|x !width="50"|y !width="50"|M<sub>0</sub> !width="50"|M<sub>3</sub> !width="50"|M<sub>5</sub> !width="50"|M<sub>6</sub> !width="50"|AND !width="50"|u(ci,x,y) |- |0||0||0||0||1||1||1||0||0 |- |0||0||1||1||1||1||1||1||1 |- |0||1||0||1||1||1||1||1||1 |- |0||1||1||1||0||1||1||0||0 |- |1||0||0||1||1||1||1||1||1 |- |1||0||1||1||1||0||1||0||0 |- |1||1||0||1||1||1||0||0||0 |- |1||1||1||1||1||1||1||1||1 |} |- | {| class="wikitable" style="margin: 1em auto 1em auto" !width="50"|ci !width="50"|x !width="50"|y !width="50"|m<sub>0</sub> !width="50"|m<sub>3</sub> !width="50"|m<sub>5</sub> !width="50"|m<sub>6</sub> !width="50"|NOR !width="50"|u(ci,x,y) |- |0||0||0||1||0||0||0||0||0 |- |0||0||1||0||0||0||0||1||1 |- |0||1||0||0||0||0||0||1||1 |- |0||1||1||0||1||0||0||0||0 |- |1||0||0||0||0||0||0||1||1 |- |1||0||1||0||0||1||0||0||0 |- |1||1||0||0||0||0||1||0||0 |- |1||1||1||0||0||0||0||1||1 |} |} In the maxterm example above, we wrote <math>co(ci, x, y) = M_0 M_1 M_2 M_4</math> but to perform this with a 4-input NOR gate we need to notice the equality to the NOR of the same minterms. That is, :<math>co(ci, x, y) = \mathrm{AND}(M_0,M_1,M_2,M_4) = \mathrm{NOR}(m_0,m_1,m_2,m_4).</math> {| style="margin: 1em auto 1em auto" |+ '''Truth tables''' | {| class="wikitable" style="margin: 1em auto 1em auto" !width="50"|ci !width="50"|x !width="50"|y !width="50"|M<sub>0</sub> !width="50"|M<sub>1</sub> !width="50"|M<sub>2</sub> !width="50"|M<sub>4</sub> !width="50"|AND !width="50"|co(ci,x,y) |- |0||0||0||0||1||1||1||0||0 |- |0||0||1||1||0||1||1||0||0 |- |0||1||0||1||1||0||1||0||0 |- |0||1||1||1||1||1||1||1||1 |- |1||0||0||1||1||1||0||0||0 |- |1||0||1||1||1||1||1||1||1 |- |1||1||0||1||1||1||1||1||1 |- |1||1||1||1||1||1||1||1||1 |} |- | {| class="wikitable" style="margin: 1em auto 1em auto" !width="50"|ci !width="50"|x !width="50"|y !width="50"|m<sub>0</sub> !width="50"|m<sub>1</sub> !width="50"|m<sub>2</sub> !width="50"|m<sub>4</sub> !width="50"|NOR !width="50"|co(ci,x,y) |- |0||0||0||1||0||0||0||0||0 |- |0||0||1||0||1||0||0||0||0 |- |0||1||0||0||0||1||0||0||0 |- |0||1||1||0||0||0||0||1||1 |- |1||0||0||0||0||0||1||0||0 |- |1||0||1||0||0||0||0||1||1 |- |1||1||0||0||0||0||0||1||1 |- |1||1||1||0||0||0||0||1||1 |} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)