Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carlson symmetric form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Series Expansion== In obtaining a [[Taylor series]] expansion for <math>R_{F}</math> or <math>R_{J}</math> it proves convenient to expand about the mean value of the several arguments. So for <math>R_{F}</math>, letting the mean value of the arguments be <math>A = (x + y + z)/3</math>, and using homogeneity, define <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> by :<math>\begin{align}R_{F}(x,y,z) & = R_{F}(A (1 - \Delta x),A (1 - \Delta y),A (1 - \Delta z)) \\ & = \frac{1}{\sqrt{A}} R_{F}(1 - \Delta x,1 - \Delta y,1 - \Delta z) \end{align}</math> that is <math>\Delta x = 1 - x/A</math> etc. The differences <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> are defined with this sign (such that they are ''subtracted''), in order to be in agreement with Carlson's papers. Since <math>R_{F}(x,y,z)</math> is symmetric under permutation of <math>x</math>, <math>y</math> and <math>z</math>, it is also symmetric in the quantities <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math>. It follows that both the integrand of <math>R_{F}</math> and its integral can be expressed as functions of the [[elementary symmetric polynomial]]s in <math>\Delta x</math>, <math>\Delta y</math> and <math>\Delta z</math> which are :<math>E_{1} = \Delta x + \Delta y + \Delta z = 0</math> :<math>E_{2} = \Delta x \Delta y + \Delta y \Delta z + \Delta z \Delta x</math> :<math>E_{3} = \Delta x \Delta y \Delta z</math> Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term... :<math>\begin{align}R_{F}(x,y,z) & = \frac{1}{2 \sqrt{A}} \int _{0}^{\infty}\frac{1}{\sqrt{(t + 1)^{3} - (t + 1)^{2} E_{1} + (t + 1) E_{2} - E_{3}}} dt \\ & = \frac{1}{2 \sqrt{A}} \int _{0}^{\infty}\left( \frac{1}{(t + 1)^{\frac{3}{2}}} - \frac{E_{2}}{2 (t + 1)^{\frac{7}{2}}} + \frac{E_{3}}{2 (t + 1)^{\frac{9}{2}}} + \frac{3 E_{2}^{2}}{8 (t + 1)^{\frac{11}{2}}} - \frac{3 E_{2} E_{3}}{4 (t + 1)^{\frac{13}{2}}} + O(E_{1}) + O(\Delta^{6})\right) dt \\ & = \frac{1}{\sqrt{A}} \left( 1 - \frac{1}{10} E_{2} + \frac{1}{14} E_{3} + \frac{1}{24} E_{2}^{2} - \frac{3}{44} E_{2} E_{3} + O(E_{1}) + O(\Delta^{6})\right) \end{align}</math> The advantage of expanding about the mean value of the arguments is now apparent; it reduces <math>E_{1}</math> identically to zero, and so eliminates all terms involving <math>E_{1}</math> - which otherwise would be the most numerous. An ascending series for <math>R_{J}</math> may be found in a similar way. There is a slight difficulty because <math>R_{J}</math> is not fully symmetric; its dependence on its fourth argument, <math>p</math>, is different from its dependence on <math>x</math>, <math>y</math> and <math>z</math>. This is overcome by treating <math>R_{J}</math> as a fully symmetric function of ''five'' arguments, two of which happen to have the same value <math>p</math>. The mean value of the arguments is therefore taken to be :<math>A = \frac{x + y + z + 2 p}{5}</math> and the differences <math>\Delta x</math>, <math>\Delta y</math> <math>\Delta z</math> and <math>\Delta p</math> defined by :<math>\begin{align}R_{J}(x,y,z,p) & = R_{J}(A (1 - \Delta x),A (1 - \Delta y),A (1 - \Delta z),A (1 - \Delta p)) \\ & = \frac{1}{A^{\frac{3}{2}}} R_{J}(1 - \Delta x,1 - \Delta y,1 - \Delta z,1 - \Delta p) \end{align}</math> The [[elementary symmetric polynomial]]s in <math>\Delta x</math>, <math>\Delta y</math>, <math>\Delta z</math>, <math>\Delta p</math> and (again) <math>\Delta p</math> are in full :<math>E_{1} = \Delta x + \Delta y + \Delta z + 2 \Delta p = 0</math> :<math>E_{2} = \Delta x \Delta y + \Delta y \Delta z + 2 \Delta z \Delta p + \Delta p^{2} + 2 \Delta p \Delta x + \Delta x \Delta z + 2 \Delta y \Delta p</math> :<math>E_{3} = \Delta z \Delta p^{2} + \Delta x \Delta p^{2} + 2 \Delta x \Delta y \Delta p + \Delta x \Delta y \Delta z + 2 \Delta y \Delta z \Delta p + \Delta y \Delta p^{2} + 2 \Delta x \Delta z \Delta p</math> :<math>E_{4} = \Delta y \Delta z \Delta p^{2} + \Delta x \Delta z \Delta p^{2} + \Delta x \Delta y \Delta p^{2} + 2 \Delta x \Delta y \Delta z \Delta p</math> :<math>E_{5} = \Delta x \Delta y \Delta z \Delta p^{2}</math> However, it is possible to simplify the formulae for <math>E_{2}</math>, <math>E_{3}</math> and <math>E_{4}</math> using the fact that <math>E_{1} = 0</math>. Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term as before... :<math>\begin{align}R_{J}(x,y,z,p) & = \frac{3}{2 A^{\frac{3}{2}}} \int _{0}^{\infty}\frac{1}{\sqrt{(t + 1)^{5} - (t + 1)^{4} E_{1} + (t + 1)^{3} E_{2} - (t + 1)^{2} E_{3} + (t + 1) E_{4} - E_{5}}} dt \\ & = \frac{3}{2 A^{\frac{3}{2}}} \int _{0}^{\infty}\left( \frac{1}{(t + 1)^{\frac{5}{2}}} - \frac{E_{2}}{2 (t + 1)^{\frac{9}{2}}} + \frac{E_{3}}{2 (t + 1)^{\frac{11}{2}}} + \frac{3 E_{2}^{2} - 4 E_{4}}{8 (t + 1)^{\frac{13}{2}}} + \frac{2 E_{5} - 3 E_{2} E_{3}}{4 (t + 1)^{\frac{15}{2}}} + O(E_{1}) + O(\Delta^{6})\right) dt \\ & = \frac{1}{A^{\frac{3}{2}}} \left( 1 - \frac{3}{14} E_{2} + \frac{1}{6} E_{3} + \frac{9}{88} E_{2}^{2} - \frac{3}{22} E_{4} - \frac{9}{52} E_{2} E_{3} + \frac{3}{26} E_{5} + O(E_{1}) + O(\Delta^{6})\right) \end{align}</math> As with <math>R_{J}</math>, by expanding about the mean value of the arguments, more than half the terms (those involving <math>E_{1}</math>) are eliminated.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)