Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy–Binet formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Continuous version == A continuous version of the Cauchy–Binet formula, known as the '''Andréief identity''',<ref>C. Andréief, "Note sur une relation entre les intégrales définies des produits des fonctions", ''Mémoires de la Société des Sciences Physiques et Naturelles de Bordeaux'' (3) 2 (1886), 1–14</ref> appears commonly in random matrix theory.<ref>{{cite book|last=Mehta|first=M.L.|title=Random Matrices|publisher=Elsevier/Academic Press|location=Amsterdam|year=2004|edition=3rd|isbn=0-12-088409-7}}</ref> It is stated as follows: let <math>\left\{f_j(x)\right\}_{j=1}^{N}</math> and <math>\left\{g_j(x)\right\}_{j=1}^{N}</math> be two sequences of integrable functions, supported on <math>I</math>. Then :<math>\int_I \cdots \int_I \det \left[f_{j}(x_k)\right]_{j,k=1}^N \det \left[g_{j}(x_k)\right]_{j,k=1}^N dx_1 \cdots dx_N = N!\, \det \left[\int_I f_j(x)g_k(x) dx\right]_{j,k=1}^{N}.</math> {{Math proof|title=Proof|proof= Let <math> S_N</math> be the [[permutation group]] of order N, <math>|s|</math> be the sign of a permutation, <math>\langle f, g \rangle = \int_I f(x) g(x) dx </math> be the "inner product".<math display="block">\begin{align} \text{left side} &= \sum_{s, s' \in S_N} (-1)^{|s| + |s'|} \int_{I^N} \prod_{j} f_{s(j)}(x_j) \prod_k g_{s'(k)}(x_k)\\ &=\sum_{s, s' \in S_N} (-1)^{|s| + |s'|} \int_{I^N} \prod_{j} f_{s(j)}(x_j) g_{s'(j)}(x_j)\\ &=\sum_{s, s' \in S_N} (-1)^{|s| + |s'|} \prod_{j} \int_{I} f_{s(j)}(x_j) g_{s'(j)}(x_j) d x_j\\ &=\sum_{s, s' \in S_N} (-1)^{|s| + |s'|} \prod_{j}\langle f_{s(j)}, g_{s'(j)} \rangle\\ &=\sum_{s' \in S_N} (-1)^{|s'| + |s'|} \sum_{s \in S_N} (-1)^{|s| + |s'^{-1}|} \prod_{j} \langle f_{(s\circ s'^{-1})(j)}, g_{j} \rangle\\ &=\sum_{s' \in S_N}\sum_{s \in S_N} (-1)^{|s \circ s'^{-1}|} \prod_{j} \langle f_{(s\circ s'^{-1})(j)}, g_{j} \rangle\\ &= \text{right side}\\ \end{align}</math> }} Forrester<ref>{{cite arXiv |eprint=1806.10411 |title=Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–83 |last=Forrester|first=Peter J. |date=2018|class=math-ph }}</ref> describes how to recover the usual Cauchy–Binet formula as a discretisation of the above identity. {{Math proof|title=Proof|proof= Pick <math>t_1 < \cdots < t_m</math> in <math>[0, 1]</math>, pick <math>f_1, \ldots, g_n</math>, such that <math>f_j(t_k) = A_{j, k}</math> and the same holds for <math>g</math> and <math>B</math>. Now plugging in <math>f_j(x_k) = \sum_l A_{j,l} \delta(x_k - t_l)</math> and <math>g_j(x_k) = \sum_l B_{j,l} \delta(x_k - t_l) </math> into the Andreev identity, and simplifying both sides, we get: <math display="block">\sum_{l_1, \ldots, l_n \in [1:m]} \det [f_j(t_{l_k})] \det [g_j(t_{l_k})] = n! \det \left[\sum_l f_j(t_{l}) g_k(t_l)\right]</math> The right side is <math>n! \det(AB)</math>, and the left side is <math>n! \sum_{S\subset [1:m], |S| = n} \det(A_{[1:m],S})\det(B_{S,[1:m]})</math>. }}It is occasionally called the '''[[Konstantin Andreev|Andréief]]-[[Eduard Heine|Heine]] identity''', though the credit to Heine sees unhistorical, as pre-2010 sources generally credit only Andréief.<ref>{{Cite web |title=What's a Heine reference for the "Andréief-Heine identity" |url=https://hsm.stackexchange.com/questions/17734/whats-a-heine-reference-for-the-andr%c3%a9ief-heine-identity/17735#17735 |access-date=2025-04-20 |website=History of Science and Mathematics Stack Exchange |language=en}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)