Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chaos theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Coexisting attractors === [[File:Coexisting Attractors.png|thumb|Coexisting chaotic and non-chaotic attractors within the generalized Lorenz model.<ref name=":4" /><ref name=":5" /><ref name=":6" /> There are 128 orbits in different colors, beginning with different initial conditions for dimensionless time between 0.625 and 5 and a heating parameter r = 680. Chaotic orbits recurrently return close to the saddle point at the origin. Nonchaotic orbits eventually approach one of two stable critical points, as shown with large blue dots. Chaotic and nonchaotic orbits occupy different regions of attraction within the phase space.]] In contrast to single type chaotic solutions, studies using Lorenz models<ref>{{Cite journal |last1=Yorke |first1=James A. |last2=Yorke |first2=Ellen D. |date=1979-09-01 |title=Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model |url=https://doi.org/10.1007/BF01011469 |journal=Journal of Statistical Physics |language=en |volume=21 |issue=3 |pages=263β277 |doi=10.1007/BF01011469 |bibcode=1979JSP....21..263Y |s2cid=12172750 |issn=1572-9613}}</ref><ref>{{Cite book |last1=Shen |first1=Bo-Wen |last2=Pielke Sr. |first2=R. A. |last3=Zeng |first3=X. |last4=Baik |first4=J.-J. |last5=Faghih-Naini |first5=S. |last6=Cui |first6=J. |last7=Atlas |first7=R. |last8=Reyes |first8=T. A. L. |title=13th Chaotic Modeling and Simulation International Conference |chapter=Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors within Lorenz Models |date=2021 |editor-last=Skiadas |editor-first=Christos H. |editor2-last=Dimotikalis |editor2-first=Yiannis |chapter-url=https://link.springer.com/chapter/10.1007/978-3-030-70795-8_57 |series=Springer Proceedings in Complexity |language=en |location=Cham |publisher=Springer International Publishing |pages=805β825 |doi=10.1007/978-3-030-70795-8_57 |isbn=978-3-030-70795-8|s2cid=245197840 }}</ref> have emphasized the importance of considering various types of solutions. For example, coexisting chaotic and non-chaotic may appear within the same model (e.g., the double pendulum system) using the same modeling configurations but different initial conditions. The findings of attractor coexistence, obtained from classical and generalized Lorenz models,<ref name=":4" /><ref name=":5" /><ref name=":6">{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke Sr. |first2=Roger Pielke |last3=Zeng |first3=Xubin |last4=Cui |first4=Jialin |last5=Faghih-Naini |first5=Sara |last6=Paxson |first6=Wei |last7=Kesarkar |first7=Amit |last8=Zeng |first8=Xiping |last9=Atlas |first9=Robert |date=2022-11-12 |title=The Dual Nature of Chaos and Order in the Atmosphere |journal=Atmosphere |language=en |volume=13 |issue=11 |pages=1892 |doi=10.3390/atmos13111892 |bibcode=2022Atmos..13.1892S |issn=2073-4433|doi-access=free }}</ref> suggested a revised view that "the entirety of weather possesses a dual nature of chaos and order with distinct predictability", in contrast to the conventional view of "weather is chaotic".
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)