Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Condorcet method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Two-method systems== {{Unreferenced section|date=March 2021}} One family of Condorcet methods consists of systems that first conduct a series of pairwise comparisons and then, if there is no Condorcet winner, fall back to an entirely different, non-Condorcet method to determine a winner. The simplest such fall-back methods involve entirely disregarding the results of the pairwise comparisons. For example, the Black method chooses the Condorcet winner if it exists, but uses the [[Borda count]] instead if there is a cycle (the method is named for [[Duncan Black]]). A more sophisticated two-stage process is, in the event of a cycle, to use a separate voting system to find the winner but to restrict this second stage to a certain subset of candidates found by scrutinizing the results of the pairwise comparisons. Sets used for this purpose are defined so that they will always contain only the Condorcet winner if there is one, and will always, in any case, contain at least one candidate. Such sets include the * [[Smith set]]: The smallest non-empty set of candidates in a particular election such that every candidate in the set can beat all candidates outside the set. It is easily shown that there is only one possible Smith set for each election. * [[Schwartz set]]: This is the innermost unbeaten set, and is usually the same as the Smith set. It is defined as the union of all possible sets of candidates such that for every set: *#Every candidate inside the set is pairwise unbeatable by any other candidate outside the set (i.e., ties are allowed). *#No proper (smaller) subset of the set fulfills the first property. * [[Landau set]] or uncovered set or Fishburn set: the set of candidates, such that each member, for every other candidate (including those inside the set), either beats this candidate or beats a third candidate that itself beats the candidate that is unbeaten by the member. One possible method is to apply [[instant-runoff voting]] in various ways, such as to the candidates of the Smith set. One variation of this method has been described as "Smith/IRV", with another being [[Tideman's alternative method]]s. It is also possible to do "Smith/Approval" by allowing voters to rank candidates, and indicate which candidates they approve, such that the candidate in the Smith set approved by the most voters wins; this is often done using an approval threshold (i.e. if voters approve their 3rd choices, those voters are automatically considered to approve their 1st and 2nd choices too). In Smith/Score, the candidate in the Smith set with the highest total score wins, with the pairwise comparisons done based on which candidates are scored higher than others.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)