Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spectral decomposition theorem === Let <math>\mathcal{A}</math> be an unital C*-algebra and <math>a \in \mathcal{A}_N</math> a normal element. Let the spectrum consist of <math>n</math> pairwise [[Disjoint sets|disjoint]] [[Closed set|closed]] subsets <math>\sigma_k \subset \C</math> for all <math>1 \leq k \leq n</math>, i.e. {{nowrap|<math>\sigma(a)=\sigma_1 \sqcup \cdots \sqcup \sigma_n</math>.}} Then there exist projections <math>p_1, \ldots, p_n \in \mathcal{A}</math> that have the following properties for all {{nowrap|<math>1 \leq j,k \leq n</math>:{{sfn|Kaballo|2014|p=375}}}} * For the spectrum, <math>\sigma(p_k) = \sigma_k</math> holds. * The projections commutate with <math>a</math>, i.e. {{nowrap|<math>p_ka=ap_k</math>.}} * The projections are [[Orthogonality|orthogonal]], i.e. {{nowrap|<math>p_jp_k=\delta_{jk} p_k</math>.}} * The sum of the projections is the unit element, i.e. {{nowrap|<math display="inline">\sum_{k=1}^n p_k = e</math>.}} In particular, there is a decomposition <math display="inline">a = \sum_{k=1}^n a_k</math> for which <math>\sigma(a_k) = \sigma_k</math> holds for all {{nowrap|<math>1 \leq k \leq n</math>.}} ''Proof.''{{sfn|Kaballo|2014|p=375}} Since all <math>\sigma_k</math> are closed, the [[Indicator function|characteristic functions]] <math>\chi_{\sigma_k}</math> are continuous on {{nowrap|<math>\sigma(a)</math>.}} Now let <math>p_k := \chi_{\sigma_k} (a)</math> be defined using the continuous functional. As the <math>\sigma_k</math> are pairwise disjoint, <math>\chi_{\sigma_j} \chi_{\sigma_k} = \delta_{jk} \chi_{\sigma_k}</math> and <math display="inline">\sum_{k=1}^n \chi_{\sigma_k} = \chi_{\cup_{k=1}^n \sigma_k} = \chi_{\sigma(a)} = \textbf{1}</math> holds and thus the <math>p_k</math> satisfy the claimed properties, as can be seen from the properties of the continuous functional equation. For the last statement, let {{nowrap|<math>a_k = a p_k = \operatorname{Id} (a) \cdot \chi_{\sigma_k} (a) = (\operatorname{Id} \cdot \chi_{\sigma_k}) (a)</math>.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)