Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples and applications== Systems of natural circulation include [[tornado]]es and other [[weather|weather systems]], [[ocean current]]s, and household [[Ventilation (architecture)|ventilation]]. Some solar water heaters use natural circulation. The [[Gulf Stream]] circulates as a result of the evaporation of water. In this process, the water increases in salinity and density. In the North Atlantic Ocean, the water becomes so dense that it begins to sink down. Convection occurs on a large scale in [[Earth atmosphere|atmosphere]]s, oceans, [[planet]]ary [[Mantle (geology)|mantle]]s, and it provides the mechanism of heat transfer for a large fraction of the outermost interiors of the Sun and all stars. Fluid movement during convection may be invisibly slow, or it may be obvious and rapid, as in a [[hurricane]]. On astronomical scales, convection of gas and dust is thought to occur in the accretion disks of [[black hole]]s, at speeds which may closely approach that of light. ===Demonstration experiments=== [[File:Thermal circulation.png|thumb|Thermal circulation of air masses]] Thermal convection in liquids can be demonstrated by placing a heat source (for example, a [[Bunsen burner]]) at the side of a container with a liquid. Adding a dye to the water (such as food colouring) will enable visualisation of the flow.<ref>{{Citation|title=Convection Experiment - GCSE Physics| date=12 December 2020 |url=https://www.youtube.com/watch?v=MBFUfld_5i0| archive-url=https://ghostarchive.org/varchive/youtube/20211211/MBFUfld_5i0| archive-date=2021-12-11 | url-status=live|language=en|access-date=2021-05-11}}{{cbignore}}</ref><ref>{{Citation|title=Convection Experiment|url=https://www.youtube.com/watch?v=B8H06ZA2xmo| archive-url=https://ghostarchive.org/varchive/youtube/20211211/B8H06ZA2xmo| archive-date=2021-12-11 | url-status=live|language=en|access-date=2021-05-11}}{{cbignore}}</ref> Another common experiment to demonstrate thermal convection in liquids involves submerging open containers of hot and cold liquid coloured with dye into a large container of the same liquid without dye at an intermediate temperature (for example, a jar of hot tap water coloured red, a jar of water chilled in a fridge coloured blue, lowered into a clear tank of water at room temperature).<ref>{{Citation|title=Convection Current Lab Demo| date=29 September 2017 |url=https://www.youtube.com/watch?v=JBGT6UPTgWE| archive-url=https://ghostarchive.org/varchive/youtube/20211211/JBGT6UPTgWE| archive-date=2021-12-11 | url-status=live|language=en|access-date=2021-05-11}}{{cbignore}}</ref> A third approach is to use two identical jars, one filled with hot water dyed one colour, and cold water of another colour. One jar is then temporarily sealed (for example, with a piece of card), inverted and placed on top of the other. When the card is removed, if the jar containing the warmer liquid is placed on top no convection will occur. If the jar containing colder liquid is placed on top, a convection current will form spontaneously.<ref>{{Citation|title=Colorful Convection Currents - Sick Science! #075| date=15 February 2012 |url=https://www.youtube.com/watch?v=RCO90hvEL1I| archive-url=https://ghostarchive.org/varchive/youtube/20211211/RCO90hvEL1I| archive-date=2021-12-11 | url-status=live|language=en|access-date=2021-05-11}}{{cbignore}}</ref> Convection in gases can be demonstrated using a candle in a sealed space with an inlet and exhaust port. The heat from the candle will cause a strong convection current which can be demonstrated with a flow indicator, such as smoke from another candle, being released near the inlet and exhaust areas respectively.<ref>{{Citation|title=Convection in gases| date=22 August 2018 |url=https://www.youtube.com/watch?v=6VZZtB7yjmA| archive-url=https://ghostarchive.org/varchive/youtube/20211211/6VZZtB7yjmA| archive-date=2021-12-11 | url-status=live|language=en|access-date=2021-05-11}}{{cbignore}}</ref> ===Double diffusive convection=== {{main|Double diffusive convection}} ===Convection cells=== {{main|Convection cell}} [[File:ConvectionCells.svg|thumb|right|300px|Convection cells in a gravity field]] A '''convection cell''', also known as a '''[[Bénard cell]]''', is a characteristic fluid flow pattern in many convection systems. A rising body of fluid typically loses heat because it encounters a colder surface. In liquid, this occurs because it exchanges heat with colder liquid through direct exchange. In the example of the Earth's atmosphere, this occurs because it radiates heat. Because of this heat loss the fluid becomes denser than the fluid underneath it, which is still rising. Since it cannot descend through the rising fluid, it moves to one side. At some distance, its downward force overcomes the rising force beneath it, and the fluid begins to descend. As it descends, it warms again and the cycle repeats itself. Additionally, convection cells can arise due to density variations resulting from differences in the composition of electrolytes.<ref>{{cite journal |last1=Colli |first1=A.N. |last2=Bisang |first2=J.M. |title=Exploring the Impact of Concentration and Temperature Variations on Transient Natural Convection in Metal Electrodeposition: A Finite Volume Method Analysis |journal=Journal of the Electrochemical Society |date=2023 |volume=170 |issue=8 |pages=083505 |doi=10.1149/1945-7111/acef62 |bibcode=2023JElS..170h3505C |s2cid=260857287 |url=https://iopscience.iop.org/article/10.1149/1945-7111/acef62/meta|url-access=subscription }}</ref> ===Atmospheric convection=== {{main|Atmospheric convection}} ====Atmospheric circulation==== {{main|Atmospheric circulation}} [[File:Earth Global Circulation.jpg|thumb|300px|left|Idealised depiction of the global circulation on Earth]] '''Atmospheric circulation''' is the large-scale movement of air, and is a means by which [[thermal energy]] is distributed on the surface of the [[Earth]], together with the much slower (lagged) ocean circulation system. The large-scale structure of the [[atmospheric circulation]] varies from year to year, but the basic climatological structure remains fairly constant. Latitudinal circulation occurs because incident solar [[radiation]] per unit area is highest at the [[heat equator]], and decreases as the [[latitude]] increases, reaching minima at the poles. It consists of two primary convection cells, the [[Hadley cell]] and the [[polar vortex]], with the [[Hadley cell]] experiencing stronger convection due to the release of [[latent heat]] energy by [[condensation]] of [[water vapor]] at higher altitudes during cloud formation. Longitudinal circulation, on the other hand, comes about because the [[ocean]] has a higher specific heat capacity than land (and also [[thermal conductivity]], allowing the heat to penetrate further beneath the surface ) and thereby absorbs and releases more [[heat]], but the [[temperature]] changes less than land. This brings the sea breeze, air cooled by the water, ashore in the day, and carries the land breeze, air cooled by contact with the ground, out to sea during the night. Longitudinal circulation consists of two cells, the [[Walker circulation]] and [[El Niño-Southern Oscillation|El Niño / Southern Oscillation]]. {{clear}} ====Weather==== {{see also|Cloud|Thunderstorm|Wind}} [[File:foehn1.svg|right|thumb|300px|How Foehn is produced]] Some more localized phenomena than global atmospheric movement are also due to convection, including wind and some of the [[hydrologic cycle]]. For example, a [[foehn wind]] is a down-slope wind which occurs on the downwind side of a mountain range. It results from the [[adiabatic]] warming of air which has dropped most of its moisture on windward slopes.<ref name="MT">{{cite web|first=Michael|last=Pidwirny|year=2008|url=http://www.physicalgeography.net/fundamentals/8e.html|title=CHAPTER 8: Introduction to the Hydrosphere (e). Cloud Formation Processes|publisher=Physical Geography|access-date=2009-01-01|url-status=dead|archive-url=https://web.archive.org/web/20081220230524/http://www.physicalgeography.net/fundamentals/8e.html|archive-date=2008-12-20}}</ref> Because of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than at the same height on the windward slopes. A [[thermal column]] (or thermal) is a vertical section of rising air in the lower altitudes of the Earth's atmosphere. Thermals are created by the uneven heating of the Earth's surface from solar radiation. The Sun warms the ground, which in turn warms the air directly above it. The warmer air expands, becoming less dense than the surrounding air mass, and creating a [[thermal low]].<ref>{{cite web|agency=National Weather Service Forecast Office in [[Tucson, Arizona]]|year=2008|url=http://www.wrh.noaa.gov/twc/monsoon/monsoon_whatis.php|title=What is a monsoon?|publisher=National Weather Service Western Region Headquarters|access-date=2009-03-08|url-status=live|archive-url=https://web.archive.org/web/20120623140647/http://www.wrh.noaa.gov/twc/monsoon/monsoon_whatis.php|archive-date=2012-06-23}}</ref><ref>{{cite journal|first1 = Douglas G. | last1 = Hahn | author2-link = Syukuro Manabe | first2 = Syukuro | last2 = Manabe |year=1975|bibcode=1975JAtS...32.1515H|title=The Role of Mountains in the South Asian Monsoon Circulation|journal=[[Journal of the Atmospheric Sciences]]|volume=32|issue=8|pages=1515–1541|doi=10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2|issn=1520-0469|doi-access=free}}</ref> The mass of lighter air rises, and as it does, it cools by expansion at lower air pressures. It stops rising when it has cooled to the same temperature as the surrounding air. Associated with a thermal is a downward flow surrounding the thermal column. The downward moving exterior is caused by colder air being displaced at the top of the thermal. Another convection-driven weather effect is the [[sea breeze]].<ref>University of Wisconsin. [http://cimss.ssec.wisc.edu/wxwise/seabrz.html Sea and Land Breezes.] {{webarchive|url=https://web.archive.org/web/20120704184333/http://cimss.ssec.wisc.edu/wxwise/seabrz.html |date=2012-07-04 }} Retrieved on 2006-10-24.</ref><ref name="Jet">JetStream: An Online School For Weather (2008). [http://www.srh.weather.gov/srh/jetstream/ocean/seabreezes.htm The Sea Breeze.] {{webarchive|url=https://web.archive.org/web/20060923233344/http://www.srh.weather.gov/srh/jetstream/ocean/seabreezes.htm |date=2006-09-23 }} [[National Weather Service]]. Retrieved on 2006-10-24.</ref> [[File:Thunderstorm formation.jpg|thumb|500px|Stages of a thunderstorm's life.]] Warm air has a lower density than cool air, so warm air rises within cooler air,<ref>{{cite book|url=https://books.google.com/books?id=PDtIAAAAIAAJ&pg=PA462 |title=Civil engineers' pocket book: a reference-book for engineers, contractors|first = Albert Irvin | last = Frye|page=462|publisher=D. Van Nostrand Company|year=1913|access-date=2009-08-31}}</ref> similar to [[hot air balloon]]s.<ref>{{cite book | url = https://books.google.com/books?id=ssO_19TRQ9AC&q=Kongming+balloon&pg=PA112 | title = Ancient Chinese Inventions | first = Yikne | last = Deng | publisher = Chinese International Press | isbn=978-7-5085-0837-5 | year=2005 | pages = 112–13 | access-date = 2009-06-18}}</ref> Clouds form as relatively warmer air carrying moisture rises within cooler air. As the moist air rises, it cools, causing some of the [[water vapor]] in the rising packet of air to [[condensation|condense]].<ref>{{cite web|agency=FMI|year=2007|url=http://www.zamg.ac.at/docu/Manual/SatManu/main.htm?/docu/Manual/SatManu/CMs/FgStr/backgr.htm|title=Fog And Stratus – Meteorological Physical Background|publisher=Zentralanstalt für Meteorologie und Geodynamik|access-date=2009-02-07|url-status=live|archive-url=https://web.archive.org/web/20110706085616/http://www.zamg.ac.at/docu/Manual/SatManu/main.htm?%2Fdocu%2FManual%2FSatManu%2FCMs%2FFgStr%2Fbackgr.htm|archive-date=2011-07-06}}</ref> When the moisture condenses, it releases energy known as [[latent heat]] of condensation which allows the rising packet of air to cool less than its surrounding air,<ref>{{cite book|url=https://books.google.com/books?id=RRSzR4NQdGkC&pg=PA20 |title=Storm world: hurricanes, politics, and the battle over global warming| first = Chris C. | last = Mooney|page=20|isbn=978-0-15-101287-9|publisher=Houghton Mifflin Harcourt|year=2007|access-date=2009-08-31}}</ref> continuing the cloud's ascension. If enough [[Convective available potential energy|instability]] is present in the atmosphere, this process will continue long enough for [[Cumulonimbus|cumulonimbus clouds]] to form, which support lightning and thunder. Generally, thunderstorms require three conditions to form: moisture, an unstable airmass, and a lifting force (heat). All [[thunderstorm]]s, regardless of type, go through three stages: the '''developing stage''', the '''mature stage''', and the '''dissipation stage'''.<ref name="Extreme Weather">{{cite book |title=Extreme Weather |first=Michael H. |last=Mogil |year=2007 |publisher=Black Dog & Leventhal Publisher |location=New York |isbn=978-1-57912-743-5 |pages=[https://archive.org/details/extremeweatherun0000mogi/page/210 210–211] |url=https://archive.org/details/extremeweatherun0000mogi/page/210 }}</ref> The average thunderstorm has a {{convert|24|km|mi|abbr=on}} diameter. Depending on the conditions present in the atmosphere, these three stages take an average of 30 minutes to go through.<ref name="tsbasics">{{cite web|url=http://www.nssl.noaa.gov/primer/tstorm/tst_basics.html|title=A Severe Weather Primer: Questions and Answers about Thunderstorms|agency=National Severe Storms Laboratory|publisher=[[National Oceanic and Atmospheric Administration]]|date=2006-10-15|access-date=2009-09-01|url-status=dead|archive-url=https://web.archive.org/web/20090825000832/http://www.nssl.noaa.gov/primer/tstorm/tst_basics.html|archive-date=2009-08-25}}</ref> ===Oceanic circulation=== {{Main|Gulf Stream|Thermohaline circulation}} [[File:Conveyor belt.svg|Ocean currents|thumb|200px|right]] Solar radiation affects the oceans: warm water from the Equator tends to circulate toward the [[geographical pole|pole]]s, while cold polar water heads towards the Equator. The surface currents are initially dictated by surface wind conditions. The [[trade winds]] blow westward in the tropics,<ref>{{cite web |title=trade winds |work=Glossary of Meteorology |publisher=American Meteorological Society |year=2009 |access-date=2008-09-08 |url=http://amsglossary.allenpress.com/glossary/search?id=trade-winds1 |url-status=dead |archive-url=https://web.archive.org/web/20081211050708/http://amsglossary.allenpress.com/glossary/search?id=trade-winds1 |archive-date=2008-12-11 }}</ref> and the [[westerlies]] blow eastward at mid-latitudes.<ref>Glossary of Meteorology (2009). [http://amsglossary.allenpress.com/glossary/search?id=westerlies1 Westerlies.] {{webarchive|url=https://web.archive.org/web/20100622073904/http://amsglossary.allenpress.com/glossary/search?id=westerlies1 |date=2010-06-22 }} [[American Meteorological Society]]. Retrieved on 2009-04-15.</ref> This wind pattern applies a [[stress (physics)|stress]] to the subtropical ocean surface with negative [[curl (mathematics)|curl]] across the [[Northern Hemisphere]],<ref>Matthias Tomczak and J. Stuart Godfrey (2001). [http://www.es.flinders.edu.au/~mattom/regoc/pdffiles/colour/double/04P-Ekman-left.pdf Regional Oceanography: an Introduction.] {{webarchive|url=https://web.archive.org/web/20090914120630/http://www.es.flinders.edu.au/~mattom/regoc/pdffiles/colour/double/04P-Ekman-left.pdf |date=2009-09-14 }} Matthias Tomczak, pp. 42. {{ISBN|81-7035-306-8}}. Retrieved on 2009-05-06.</ref> and the reverse across the [[Southern Hemisphere]]. The resulting [[Sverdrup transport]] is equatorward.<ref>Earthguide (2007). [http://earthguide.ucsd.edu/parkerprogram/berger/pdf/OcnBasLesson06.pdf Lesson 6: Unraveling the Gulf Stream Puzzle - On a Warm Current Running North.] {{webarchive|url=https://web.archive.org/web/20080723104316/http://earthguide.ucsd.edu/parkerprogram/berger/pdf/OcnBasLesson06.pdf |date=2008-07-23 }} [[University of California]] at San Diego. Retrieved on 2009-05-06.</ref> Because of conservation of [[potential vorticity]] caused by the poleward-moving winds on the [[subtropical ridge]]'s western periphery and the increased relative vorticity of poleward moving water, transport is balanced by a narrow, accelerating poleward current, which flows along the western boundary of the ocean basin, outweighing the effects of friction with the cold western boundary current which originates from high latitudes.<ref>Angela Colling (2001). [https://books.google.com/books?id=tFJRLhSez_YC&pg=PA90 Ocean circulation.] {{webarchive|url=https://web.archive.org/web/20180302144439/https://books.google.com/books?id=tFJRLhSez_YC&pg=PA90 |date=2018-03-02 }} Butterworth-Heinemann, pp. 96. Retrieved on 2009-05-07.</ref> The overall process, known as western intensification, causes currents on the western boundary of an ocean basin to be stronger than those on the eastern boundary.<ref>National Environmental Satellite, Data, and Information Service (2009). [http://www.science-house.org/nesdis/gulf/background.html Investigating the Gulf Stream.] {{webarchive|url=https://web.archive.org/web/20100503013457/http://www.science-house.org/nesdis/gulf/background.html |date=2010-05-03 }} [[North Carolina State University]]. Retrieved on 2009-05-06.</ref> As it travels poleward, warm water transported by strong warm water current undergoes evaporative cooling. The cooling is wind driven: wind moving over water cools the water and also causes [[evaporation]], leaving a saltier brine. In this process, the water becomes saltier and denser and decreases in temperature. Once sea ice forms, salts are left out of the ice, a process known as brine exclusion.<ref>{{cite web |last=Russel |first=Randy |title=Thermohaline Ocean Circulation |url=http://www.windows.ucar.edu/tour/link=/earth/Water/thermohaline_ocean_circulation.html |publisher=University Corporation for Atmospheric Research |access-date=2009-01-06 |url-status=live |archive-url=https://web.archive.org/web/20090325062339/http://www.windows.ucar.edu/tour/link=/earth/Water/thermohaline_ocean_circulation.html |archive-date=2009-03-25 }}</ref> These two processes produce water that is denser and colder. The water across the northern [[Atlantic Ocean]] becomes so dense that it begins to sink down through less salty and less dense water. (This [[open ocean convection]] is not unlike that of a [[lava lamp]].) This downdraft of heavy, cold and dense water becomes a part of the [[North Atlantic Deep Water]], a south-going stream.<ref>{{cite web |last=Behl |first=R. |title=Atlantic Ocean water masses |url=http://seis.natsci.csulb.edu/rbehl/NADW.htm |publisher=[[California State University]] Long Beach |access-date=2009-01-06|archive-url = https://web.archive.org/web/20080523170145/http://seis.natsci.csulb.edu/rbehl/NADW.htm |archive-date = May 23, 2008|url-status=dead}}</ref> {{clear}} ===Mantle convection=== {{main|Mantle convection}} [[File:Accretion-Subduction.PNG|thumb|right|250px|An [[oceanic plate]] is added to by upwelling (left) and consumed at a [[subduction]] zone (right).]] '''Mantle convection''' is the slow creeping motion of Earth's rocky mantle caused by convection currents carrying heat from the interior of the Earth to the surface.<ref name="University of Winnipeg">{{cite web | date = 2002-12-16 | last1 = Kobes | first1 = Randy | first2 = Gabor | last2 = Kunstatter | url = http://theory.uwinnipeg.ca/mod_tech/node195.html | title = Mantle Convection | publisher = Physics Department, University of Winnipeg | access-date = 2010-01-03 | url-status = dead | archive-url = https://web.archive.org/web/20110114151750/http://theory.uwinnipeg.ca/mod_tech/node195.html | archive-date = 2011-01-14 }}</ref> It is one of 3 driving forces that causes tectonic plates to move around the Earth's surface.<ref name=Condie>{{cite book |title=Plate tectonics and crustal evolution |first=Kent C. |last=Condie |url=https://books.google.com/books?id=HZrA6OQzsvgC&pg=PA5 |page=5 |isbn=978-0-7506-3386-4 |year=1997 |edition=4th |publisher=Butterworth-Heinemann |url-status=live |archive-url=https://web.archive.org/web/20131029161501/http://books.google.com/books?id=HZrA6OQzsvgC&pg=PA5 |archive-date=2013-10-29 }}</ref> The Earth's surface is divided into a number of [[tectonic]] plates that are continuously being created and consumed at their opposite plate boundaries. Creation ([[Accretion (geology)|accretion]]) occurs as mantle is added to the growing edges of a plate. This hot added material cools down by conduction and convection of heat. At the consumption edges of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in the process of subduction at an ocean trench. This subducted material sinks to some depth in the Earth's interior where it is prohibited from sinking further. The subducted oceanic crust triggers volcanism. Convection within [[Earth's mantle]] is the driving force for [[plate tectonics]]. Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the [[upper mantle (Earth)|upper mantle]], and is therefore less dense. This sets up two primary types of instabilities. In the first type, plumes rise from the lower mantle, and corresponding unstable regions of [[lithosphere]] drip back into the mantle. In the second type, subducting oceanic plates (which largely constitute the upper thermal boundary layer of the mantle) plunge back into the mantle and move downwards towards the [[core-mantle boundary]]. Mantle convection occurs at rates of centimeters per year, and it takes on the order of hundreds of millions of years to complete a cycle of convection. Neutrino flux measurements from the Earth's core (see [[kamLAND]]) show the source of about two-thirds of the heat in the inner core is the [[radioactive decay]] of [[potassium|<sup>40</sup>K]], uranium and thorium. This has allowed plate tectonics on Earth to continue far longer than it would have if it were simply driven by heat left over from Earth's formation; or with heat produced from [[gravitational energy|gravitational potential energy]], as a result of physical rearrangement of denser portions of the Earth's interior toward the center of the planet (that is, a type of prolonged falling and settling). {{clear}} ===Stack effect=== {{Main|Stack effect}} The '''Stack effect''' or '''chimney effect''' is the movement of air into and out of buildings, chimneys, flue gas stacks, or other containers due to buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation and infiltration. Some [[cooling tower]]s operate on this principle; similarly the [[solar updraft tower]] is a proposed device to generate electricity based on the stack effect. ===Stellar physics=== {{main|Convection zone|granule (solar physics)}} [[File:Structure of Stars (artist’s impression).jpg|thumb|right|300px|An illustration of the structure of the [[Sun]] and a [[red giant]] star, showing their convective zones. These are the granular zones in the outer layers of these stars.]] The convection zone of a star is the range of radii in which energy is transported outward from the [[stellar core|core region]] primarily by convection rather than [[Radiation zone|radiation]]. This occurs at radii which are sufficiently [[Opacity (optics)|opaque]] that convection is more efficient than radiation at transporting energy.<ref>{{cite book | title=Discovering the Cosmos | first=Robert C. | last=Bless | year=1996 | page=310 | isbn=9780935702675 | publisher=University Science Books | url=https://books.google.com/books?id=jC47sk3mfjcC&pg=PA310 }}</ref> Granules on the [[photosphere]] of the Sun are the visible tops of convection cells in the photosphere, caused by convection of [[plasma (physics)|plasma]] in the photosphere. The rising part of the granules is located in the center where the plasma is hotter. The outer edge of the granules is darker due to the cooler descending plasma. A typical granule has a diameter on the order of 1,000 kilometers and each lasts 8 to 20 minutes before dissipating. Below the photosphere is a layer of much larger "supergranules" up to 30,000 kilometers in diameter, with lifespans of up to 24 hours. {{clear}} ===Water convection at freezing temperatures=== [[Water]] is a fluid that does not obey the Boussinesq approximation.<ref name=":0">{{Cite journal|last1=Banaszek|first1=J.|last2=Jaluria|first2=Y.|last3=Kowalewski|first3=T. A.|last4=Rebow|first4=M.|date=1999-10-01|journal=Numerical Heat Transfer, Part A: Applications|language=en|volume=36|issue=5|pages=449–472|doi=10.1080/104077899274624|issn=1040-7782|title=Semi-Implicit Fem Analysis of Natural Convection in Freezing Water|bibcode=1999NHTA...36..449B|s2cid=3740709 }}</ref> This is because its density varies nonlinearly with temperature, which causes its thermal expansion coefficient to be inconsistent near freezing temperatures.<ref>{{Cite web|url=https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html|title=Water - Density, Specific Weight and Thermal Expansion Coefficient|website=www.engineeringtoolbox.com|language=en|access-date=2018-12-01}}</ref><ref name=":1">{{Cite news|url=http://polymer.bu.edu/hes/articles/ds03.pdf |archive-url=https://web.archive.org/web/20060301224729/http://polymer.bu.edu/hes/articles/ds03.pdf |archive-date=2006-03-01 |url-status=live|title=Supercooled and Glassy Water|last1=Debenedetti|first1=Pablo G.|date=June 2003|work=Physics Today|access-date=1 December 2018|last2=Stanley|first2=H. Eugene}}</ref> The [[density of water]] reaches a maximum at 4 °C and decreases as the temperature deviates. This phenomenon is investigated by experiment and numerical methods.<ref name=":0" /> Water is initially stagnant at 10 °C within a square cavity. It is differentially heated between the two vertical walls, where the left and right walls are held at 10 °C and 0 °C, respectively. The density anomaly manifests in its flow pattern.<ref name=":0" /><ref>{{Cite journal|last1=Giangi|first1=Marilena|last2=Stella|first2=Fulvio|last3=Kowalewski|first3=Tomasz A.|date=December 1999|title=Phase change problems with free convection: fixed grid numerical simulation|journal=Computing and Visualization in Science|language=en|volume=2|issue=2–3|pages=123–130|doi=10.1007/s007910050034|issn=1432-9360|citeseerx=10.1.1.31.9300|s2cid=3756976 }}</ref><ref>{{Cite journal|last1=Tong|first1=Wei|last2=Koster|first2=Jean N.|date=December 1993|title=Natural convection of water in a rectangular cavity including density inversion|journal=International Journal of Heat and Fluid Flow|volume=14|issue=4|pages=366–375|doi=10.1016/0142-727x(93)90010-k|bibcode=1993IJHFF..14..366T |issn=0142-727X}}</ref><ref>{{Cite journal|last1=Ezan|first1=Mehmet Akif|last2=Kalfa|first2=Mustafa|date=October 2016|title=Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity|journal=International Journal of Heat and Fluid Flow|volume=61|pages=438–448|doi=10.1016/j.ijheatfluidflow.2016.06.004|bibcode=2016IJHFF..61..438E |issn=0142-727X}}</ref> As the water is cooled at the right wall, the density increases, which accelerates the flow downward. As the flow develops and the water cools further, the decrease in density causes a recirculation current at the bottom right corner of the cavity. Another case of this phenomenon is the event of [[Supercooling|super-cooling]], where the water is cooled to below freezing temperatures but does not immediately begin to freeze.<ref name=":1" /><ref name=":2">{{Cite journal|last1=Moore|first1=Emily B.|last2=Molinero|first2=Valeria|date=November 2011|title=Structural transformation in supercooled water controls the crystallization rate of ice|journal=Nature|language=En|volume=479|issue=7374|pages=506–508|doi=10.1038/nature10586|pmid=22113691|issn=0028-0836|arxiv=1107.1622|bibcode=2011Natur.479..506M|s2cid=1784703 }}</ref> Under the same conditions as before, the flow is developed. Afterward, the temperature of the right wall is decreased to −10 °C. This causes the water at that wall to become supercooled, create a counter-clockwise flow, and initially overpower the warm current.<ref name=":0" /> This plume is caused by a delay in the [[Nucleation of ice|nucleation of the ice]].<ref name=":0" /><ref name=":1" /><ref name=":2" /> Once ice begins to form, the flow returns to a similar pattern as before and the solidification propagates gradually until the flow is redeveloped.<ref name=":0" /> ===Nuclear reactors=== In a [[nuclear reactor]], natural circulation can be a design criterion. It is achieved by reducing turbulence and friction in the fluid flow (that is, minimizing [[head loss]]), and by providing a way to remove any inoperative pumps from the fluid path. Also, the reactor (as the heat source) must be physically lower than the steam generators or turbines (the heat sink). In this way, natural circulation will ensure that the fluid will continue to flow as long as the reactor is hotter than the heat sink, even when power cannot be supplied to the pumps. Notable examples are the [[S5G reactor|S5G]] <ref>{{cite web| url=http://www.chinfo.navy.mil/navpalib/cno/n87/history/tech-3.html| publisher=Chief of Naval Operations Submarine Warfare Division| title=Technical Innovations of the Submarine Force| access-date=2006-03-12| url-status=dead| archive-url=https://web.archive.org/web/20060127003651/http://www.chinfo.navy.mil/navpalib/cno/n87/history/tech-3.html| archive-date=2006-01-27}}</ref><ref>{{cite web| url=http://ar.inel.gov/images/pdf/200506/2005061600214ALL.pdf| title=Appendix C, Attachment to NR:IBO-05/023, Evaluation of Naval Reactors Facility Radioactive Waste Disposed of at the Radioactive Waste Management Complex| access-date=2006-03-12| archive-url=https://web.archive.org/web/20120204154809/http://ar.inel.gov/images/pdf/200506/2005061600214ALL.pdf| archive-date=2012-02-04| url-status=dead}}</ref><ref>{{cite book |last1=Jones |first1=Edward Monroe |last2=Roderick |first2=Shawn S. |title=Submarine Torpedo Tactics: An American History |date=4 November 2014 |publisher=McFarland |isbn=978-0-7864-9646-4 |page=153 |url=https://books.google.com/books?id=6F6QBQAAQBAJ |language=en}}</ref> and [[S8G reactor|S8G]]<ref>{{cite web| url=http://ship.bsu.by/main.asp?id=100092| script-title=ru:Энциклопедия кораблей /Ракетные ПЛ /Огайо| access-date=2006-03-12| language=ru| archive-date=2006-07-14| archive-url=https://web.archive.org/web/20060714151444/http://ship.bsu.by/main.asp?id=100092| url-status=dead}}</ref><ref>{{cite web| url=http://www.submarinesonstamps.co.il/openhist.php?ID=269| title=The Ohio, US Navy's nuclear-powered ballistic missile submarine| access-date=2006-03-12 |archive-url = https://web.archive.org/web/20060720075350/http://www.submarinesonstamps.co.il/openhist.php?ID=269 <!-- Bot retrieved archive --> |archive-date = 2006-07-20}}</ref><ref>{{cite web| url=http://tech.military.com/equipment/viewEquipment.do?eq_id=89213| title=Members-only feature, registration required| access-date=2006-03-12| archive-url=https://web.archive.org/web/20070223130956/http://tech.military.com/equipment/viewEquipment.do?eq_id=89213| archive-date=2007-02-23| url-status=dead}}</ref> [[United States Naval reactor]]s, which were designed to operate at a significant fraction of full power under natural circulation, quieting those propulsion plants. The [[S6G reactor]] cannot operate at power under natural circulation, but can use it to maintain emergency cooling while shut down. By the nature of natural circulation, fluids do not typically move very fast, but this is not necessarily bad, as high flow rates are not essential to safe and effective reactor operation. In modern design nuclear reactors, flow reversal is almost impossible. All nuclear reactors, even ones designed to primarily use natural circulation as the main method of fluid circulation, have pumps that can circulate the fluid in the case that natural circulation is not sufficient.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)