Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convex set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Blaschke-Santaló diagrams === The set <math>\mathcal{K}^2</math> of all planar convex bodies can be parameterized in terms of the convex body [[Diameter of a set|diameter]] ''D'', its inradius ''r'' (the biggest circle contained in the convex body) and its circumradius ''R'' (the smallest circle containing the convex body). In fact, this set can be described by the set of inequalities given by<ref name=":0">{{Cite journal|last=Santaló|first=L.|date=1961|title=Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa planas|journal=Mathematicae Notae|volume=17|pages=82–104}}</ref><ref name=":1">{{Cite journal|last1=Brandenberg|first1=René|last2=González Merino|first2=Bernardo|date=2017|title=A complete 3-dimensional Blaschke-Santaló diagram|url=http://mia.ele-math.com/20-22|journal=Mathematical Inequalities & Applications|language=en|issue=2|pages=301–348|doi=10.7153/mia-20-22|issn=1331-4343|doi-access=free|arxiv=1404.6808}}</ref> <math display=block>2r \le D \le 2R</math> <math display=block>R \le \frac{\sqrt{3}}{3} D</math> <math display=block>r + R \le D</math> <math display=block>D^2 \sqrt{4R^2-D^2} \le 2R (2R + \sqrt{4R^2 -D^2})</math> and can be visualized as the image of the function ''g'' that maps a convex body to the {{math|'''R'''<sup>2</sup>}} point given by (''r''/''R'', ''D''/2''R''). The image of this function is known a (''r'', ''D'', ''R'') Blachke-Santaló diagram.<ref name=":1" /> [[File:Blaschke-Santaló_diagram_for_planar_convex_bodies.pdf|alt=|center|thumb|673x673px|Blaschke-Santaló (''r'', ''D'', ''R'') diagram for planar convex bodies. <math>\mathbb{L}</math> denotes the line segment, <math>\mathbb{I}_{\frac{\pi}{3}}</math> the equilateral triangle, <math>\mathbb{RT}</math> the [[Reuleaux triangle]] and <math>\mathbb{B}_2</math> the unit circle.]] Alternatively, the set <math>\mathcal{K}^2</math> can also be parametrized by its width (the smallest distance between any two different parallel support hyperplanes), perimeter and area.<ref name=":0" /><ref name=":1" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)