Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariance matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Block matrices === The joint mean <math>\boldsymbol\mu</math> and [[cross-covariance matrix|joint covariance matrix]] <math>\boldsymbol\Sigma</math> of <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> can be written in block form <math display="block"> \boldsymbol\mu = \begin{bmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_Y \end{bmatrix}, \qquad \boldsymbol\Sigma = \begin{bmatrix} \operatorname{K}_\mathbf{XX} & \operatorname{K}_\mathbf{XY} \\ \operatorname{K}_\mathbf{YX} & \operatorname{K}_\mathbf{YY} \end{bmatrix} </math> where <math> \operatorname{K}_\mathbf{XX} = \operatorname{var}(\mathbf{X}) </math>, <math> \operatorname{K}_\mathbf{YY} = \operatorname{var}(\mathbf{Y}) </math> and <math> \operatorname{K}_\mathbf{XY} = \operatorname{K}^\mathsf{T}_\mathbf{YX} = \operatorname{cov}(\mathbf{X}, \mathbf{Y}) </math>. <math> \operatorname{K}_\mathbf{XX} </math> and <math> \operatorname{K}_\mathbf{YY} </math> can be identified as the variance matrices of the [[marginal distribution]]s for <math> \mathbf{X} </math> and <math> \mathbf{Y} </math> respectively. If <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are [[Multivariate normal distribution|jointly normally distributed]], <math display="block"> \mathbf{X}, \mathbf{Y} \sim\ \mathcal{N}(\boldsymbol\mu, \operatorname{\boldsymbol\Sigma}), </math> then the [[conditional distribution]] for <math>\mathbf{Y}</math> given <math>\mathbf{X}</math> is given by<ref name=eaton>{{cite book|last=Eaton|first=Morris L.|title=Multivariate Statistics: a Vector Space Approach|year=1983|publisher=John Wiley and Sons|isbn=0-471-02776-6|pages=116β117}}</ref> <math display="block"> \mathbf{Y} \mid \mathbf{X} \sim\ \mathcal{N}(\boldsymbol{\mu}_\mathbf{Y|X}, \operatorname{K}_\mathbf{Y|X}), </math> defined by [[conditional mean]] <math display="block"> \boldsymbol{\mu}_{\mathbf{Y}|\mathbf{X}} = \boldsymbol{\mu}_\mathbf{Y} + \operatorname{K}_\mathbf{YX} \operatorname{K}_\mathbf{XX}^{-1} \left( \mathbf{X} - \boldsymbol{\mu}_\mathbf{X} \right) </math> and [[conditional variance]] <math display="block"> \operatorname{K}_\mathbf{Y|X} = \operatorname{K}_\mathbf{YY} - \operatorname{K}_\mathbf{YX} \operatorname{K}_\mathbf{XX}^{-1} \operatorname{K}_\mathbf{XY}. </math> The matrix <math> \operatorname{K}_\mathbf{YX} \operatorname{K}_\mathbf{XX}^{-1} </math> is known as the matrix of [[regression analysis|regression]] coefficients, while in linear algebra <math> \operatorname{K}_\mathbf{Y|X} </math> is the [[Schur complement]] of <math> \operatorname{K}_\mathbf{XX} </math> in <math> \boldsymbol\Sigma </math>. The matrix of regression coefficients may often be given in transpose form, <math> \operatorname{K}_\mathbf{XX}^{-1} \operatorname{K}_\mathbf{XY} </math>, suitable for post-multiplying a row vector of explanatory variables <math> \mathbf{X}^\mathsf{T} </math> rather than pre-multiplying a column vector <math> \mathbf{X} </math>. In this form they correspond to the coefficients obtained by inverting the matrix of the [[normal equations]] of [[ordinary least squares]] (OLS).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)