Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covariant derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Tensor fields=== Once the covariant derivative is defined for fields of vectors and covectors it can be defined for arbitrary [[Tensor (intrinsic definition)|tensor]] fields by imposing the following identities for every pair of tensor fields <math> \varphi</math> and <math>\psi </math> in a neighborhood of the point {{mvar|p}}: <math display="block">\nabla_\mathbf{v}\left(\varphi \otimes \psi\right)_p = \left(\nabla_\mathbf{v}\varphi\right)_p \otimes \psi(p) + \varphi(p) \otimes \left(\nabla_\mathbf{v}\psi\right)_p,</math> and for <math>\varphi</math> and <math>\psi</math> of the same valence <math display="block">\nabla_\mathbf{v}(\varphi + \psi)_p = (\nabla_\mathbf{v}\varphi)_p + (\nabla_\mathbf{v}\psi)_p.</math> The covariant derivative of a tensor field along a vector field {{math|'''v'''}} is again a tensor field of the same type. Explicitly, let {{mvar|T}} be a tensor field of type {{math|(''p'', ''q'')}}. Consider {{mvar|T}} to be a differentiable [[multilinear map]] of [[smooth function|smooth]] [[section (fiber bundle)|sections]] {{math|''Ξ±''{{isup|1}}, ''Ξ±''{{isup|2}}, ..., ''Ξ±''<sup>''q''</sup>}} of the cotangent bundle {{math|''T''{{isup|β}}''M''}} and of sections {{math|''X''{{sub|1}}, ''X''{{sub|2}}, ..., ''X''<sub>''p''</sub>}} of the [[tangent bundle]] {{math|''TM''}}, written {{math|''T''(''Ξ±''{{isup|1}}, ''Ξ±''{{isup|2}}, ..., ''X''{{sub|1}}, ''X''{{sub|2}}, ...)}} into {{math|'''R'''}}. The covariant derivative of {{mvar|T}} along {{mvar|Y}} is given by the formula <math display="block">\begin{align} (\nabla_Y T)\left(\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots\right) = &{} \nabla_Y\left(T\left(\alpha_1,\alpha_2, \ldots, X_1, X_2, \ldots\right)\right) \\ &{}- T\left(\nabla_Y\alpha_1, \alpha_2, \ldots, X_1, X_2, \ldots\right) - T\left(\alpha_1, \nabla_Y\alpha_2, \ldots, X_1, X_2, \ldots\right) - \cdots \\ &{}- T\left(\alpha_1, \alpha_2, \ldots, \nabla_YX_1, X_2, \ldots\right) - T\left(\alpha_1, \alpha_2, \ldots, X_1, \nabla_Y X_2, \ldots\right) - \cdots \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)