Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cross section (physics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dipole approximation for the scattering cross section === Let us assume that a particle supports only electric and magnetic dipole modes with polarizabilities <math display="inline">\mathbf{p} = \alpha^e \mathbf{E}</math> and <math display="inline">\mathbf{m} = (\mu \mu_0)^{-1}\alpha^m \mathbf{H}</math> (here we use the notation of magnetic polarizability in the manner of Bekshaev et al.<ref name="Bekshaev2013">{{cite journal | last=Bekshaev | first=A Ya | title=Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows | journal=Journal of Optics | volume=15 | issue=4 | date=2013-04-01 | issn=2040-8978 | doi=10.1088/2040-8978/15/4/044004 | page=044004| arxiv=1210.5730 | bibcode=2013JOpt...15d4004B | s2cid=119234614 }}</ref><ref name="Bliokh2014">{{cite journal | last1=Bliokh | first1=Konstantin Y. | last2=Bekshaev | first2=Aleksandr Y. | last3=Nori | first3=Franco | title=Extraordinary momentum and spin in evanescent waves | journal=Nature Communications | publisher=Springer Science and Business Media LLC | volume=5 | issue=1 | date=2014-03-06 | issn=2041-1723 | doi=10.1038/ncomms4300 | page=3300| pmid=24598730 | arxiv=1308.0547 | bibcode=2014NatCo...5.3300B | s2cid=15832637 | doi-access=free }}</ref> rather than the notation of Nieto-Vesperinas et al.<ref name="Nieto-Vesperinas2010">{{cite journal | last1=Nieto-Vesperinas | first1=M. | last2=Sáenz | first2=J. J. | last3=Gómez-Medina | first3=R. | last4=Chantada | first4=L. | title=Optical forces on small magnetodielectric particle | journal=Optics Express | publisher=The Optical Society | volume=18 | issue=11 | date=2010-05-14 | pages=11428–11443 | issn=1094-4087 | doi=10.1364/oe.18.011428 | pmid=20589003 | bibcode=2010OExpr..1811428N | doi-access=free }}</ref>) expressed through the Mie coefficients as <math display="block"> \alpha^e = 4 \pi \varepsilon_0 \cdot i \frac{3 \varepsilon}{2 k^3} a_1, \qquad \alpha^m = 4 \pi \mu_0 \cdot i \frac{3 \mu}{2 k^3} b_1. </math> Then the cross sections are given by <math display="block"> \sigma_{\text{ext}} = \sigma_{\text{ext}}^{\text{(e)}} + \sigma_{\text{ext}}^{\text{(m)}} = \frac{1}{4\pi \varepsilon \varepsilon_0} \cdot 4\pi k \Im(\alpha^e) + \frac{1}{4\pi \mu \mu_0} \cdot 4\pi k \Im(\alpha^m) </math> <math display="block"> \sigma_{\text{sc}} = \sigma_{\text{sc}}^{\text{(e)}} + \sigma_{\text{sc}}^{\text{(m)}} = \frac{1}{(4\pi \varepsilon \varepsilon_0)^2} \cdot \frac{8\pi}{3} k^4 |\alpha^e|^2 + \frac{1}{(4\pi \mu \mu_0)^2} \cdot \frac{8\pi}{3} k^4 |\alpha^m|^2 </math> and, finally, the electric and magnetic absorption cross sections <math display="inline">\sigma_{\text{abs}} = \sigma_{\text{abs}}^{\text{(e)}} + \sigma_{\text{abs}}^{\text{(m)}}</math> are <math display="block"> \sigma_{\text{abs}}^{\text{(e)}} = \frac{1}{4 \pi \varepsilon \varepsilon_0} \cdot 4\pi k \left[ \Im(\alpha^e) - \frac{k^3}{6 \pi \varepsilon \varepsilon_0} |\alpha^e|^2\right] </math> and <math display="block"> \sigma_{\text{abs}}^{\text{(m)}} = \frac{1}{4 \pi \mu \mu_0} \cdot 4\pi k \left[ \Im(\alpha^m) - \frac{k^3}{6 \pi \mu \mu_0} |\alpha^m|^2\right] </math> For the case of a no-inside-gain particle, i.e. no energy is emitted by the particle internally (<math display="inline">\sigma_{\text{abs}} > 0</math>), we have a particular case of the [[Optical theorem]] <math display="block"> \frac{1}{4\pi \varepsilon \varepsilon_0} \Im(\alpha^e) + \frac{1}{4\pi \mu \mu_0} \Im(\alpha^m) \geq \frac{2 k^3}{3} \left[ \frac{|\alpha^e|^2}{(4\pi \varepsilon \varepsilon_0)^2} + \frac{|\alpha^m|^2}{(4\pi \mu \mu_0)^2} \right] </math> Equality occurs for non-absorbing particles, i.e. for <math display="inline">\Im(\varepsilon) = \Im(\mu) = 0</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)