Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diagonalizable matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Application to matrix functions == Diagonalization can be used to efficiently compute the powers of a matrix {{nowrap|<math>A = PDP^{-1}</math>:}} : <math>\begin{align} A^k &= \left(PDP^{-1}\right)^k = \left(PDP^{-1}\right) \left(PDP^{-1}\right) \cdots \left(PDP^{-1}\right) \\ &= PD\left(P^{-1}P\right) D \left(P^{-1}P\right) \cdots \left(P^{-1}P\right) D P^{-1} = PD^kP^{-1}, \end{align}</math> and the latter is easy to calculate since it only involves the powers of a diagonal matrix. For example, for the matrix <math>A</math> with eigenvalues <math>\lambda = 1,1,2</math> in the example above we compute: : <math>\begin{align} A^k = PD^kP^{-1} &= \left[\begin{array}{rrr} 1 & \,0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & \!\!\!\!-1 \end{array}\right] \begin{bmatrix} 1^k & 0 & 0 \\ 0 & 1^k & 0 \\ 0 & 0 & 2^k \end{bmatrix} \left[\begin{array}{rrr} 1 & \,0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & \!\!\!\!-1 \end{array}\right]^{-1} \\[1em] &= \begin{bmatrix} 2 - 2^k & -1 + 2^k & 2 - 2^{k + 1} \\ 0 & 1 & 0 \\ -1 + 2^k & 1 - 2^k & -1 + 2^{k + 1} \end{bmatrix}. \end{align}</math> This approach can be generalized to [[matrix exponential]] and other [[matrix function]]s that can be defined as power series. For example, defining {{nowrap|<math display="inline">\exp(A) = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots</math>,}} we have: : <math>\begin{align} \exp(A) = P \exp(D) P^{-1} &= \left[\begin{array}{rrr} 1 & \,0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & \!\!\!\!-1 \end{array}\right] \begin{bmatrix} e^1 & 0 & 0 \\ 0 & e^1 & 0 \\ 0 & 0 & e^2 \end{bmatrix} \left[\begin{array}{rrr} 1 & \,0 & 1\\ 1 & 2 & 0\\ 0 & 1 & \!\!\!\!-1 \end{array}\right]^{-1} \\[1em] &= \begin{bmatrix} 2 e - e^2 & -e + e^2 & 2 e - 2 e^2 \\ 0 & e & 0 \\ -e + e^2 & e - e^2 & -e + 2 e^2 \end{bmatrix}. \end{align}</math> This is particularly useful in finding closed form expressions for terms of [[linear recursive sequences]], such as the [[Fibonacci number#Matrix form|Fibonacci numbers]]. === Particular application === For example, consider the following matrix: :<math>M = \begin{bmatrix}a & b - a\\ 0 & b\end{bmatrix}.</math> Calculating the various powers of <math>M</math> reveals a surprising pattern: :<math> M^2 = \begin{bmatrix}a^2 & b^2-a^2 \\ 0 &b^2 \end{bmatrix},\quad M^3 = \begin{bmatrix}a^3 & b^3-a^3 \\ 0 &b^3 \end{bmatrix},\quad M^4 = \begin{bmatrix}a^4 & b^4-a^4 \\ 0 &b^4 \end{bmatrix},\quad \ldots </math> The above phenomenon can be explained by diagonalizing {{nowrap|<math>M</math>.}} To accomplish this, we need a basis of <math>\R^2</math> consisting of eigenvectors of {{nowrap|<math>M</math>.}} One such eigenvector basis is given by :<math> \mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{e}_1,\quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{e}_1 + \mathbf{e}_2, </math> where '''e'''<sub>''i''</sub> denotes the standard basis of '''R'''<sup>''n''</sup>. The reverse change of basis is given by :<math>\mathbf{e}_1 = \mathbf{u},\qquad \mathbf{e}_2 = \mathbf{v} - \mathbf{u}.</math> Straightforward calculations show that :<math>M\mathbf{u} = a\mathbf{u},\qquad M\mathbf{v} = b\mathbf{v}.</math> Thus, ''a'' and ''b'' are the eigenvalues corresponding to '''u''' and '''v''', respectively. By linearity of matrix multiplication, we have that :<math> M^n \mathbf{u} = a^n \mathbf{u},\qquad M^n \mathbf{v} = b^n \mathbf{v}.</math> Switching back to the standard basis, we have :<math>\begin{align} M^n \mathbf{e}_1 &= M^n \mathbf{u} = a^n \mathbf{e}_1, \\ M^n \mathbf{e}_2 &= M^n \left(\mathbf{v} - \mathbf{u}\right) = b^n \mathbf{v} - a^n\mathbf{u} = \left(b^n - a^n\right) \mathbf{e}_1 + b^n\mathbf{e}_2. \end{align}</math> The preceding relations, expressed in matrix form, are :<math>M^n = \begin{bmatrix} a^n & b^n - a^n \\ 0 & b^n \end{bmatrix}, </math> thereby explaining the above phenomenon.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)