Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Digamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Series with Gregory's coefficients, Cauchy numbers and Bernoulli polynomials of the second kind=== There exist various series for the digamma containing rational coefficients only for the rational arguments. In particular, the series with [[Gregory coefficients|Gregory's coefficients]] {{math|''G''<sub>''n''</sub>}} is :<math> \psi(v) =\ln v- \sum_{n=1}^\infty\frac{\big| G_{n}\big|(n-1)!}{(v)_{n}},\qquad \Re (v) >0, </math> : <math> \psi(v) =2\ln\Gamma(v) - 2v\ln v + 2v +2\ln v -\ln2\pi - 2\sum_{n=1}^\infty\frac{\big|G_{n}(2)\big|}{(v)_{n}}\,(n-1)! ,\qquad \Re (v) >0, </math> : <math> \psi(v) =3\ln\Gamma(v) - 6\zeta'(-1,v) + 3v^2\ln{v} - \frac32 v^2 - 6v\ln(v)+ 3 v+3\ln{v} - \frac32\ln2\pi + \frac12 - 3\sum_{n=1}^\infty\frac{\big| G_{n}(3) \big|}{(v)_{n}}\,(n-1)! ,\qquad \Re (v) >0, </math> where {{math|(''v'')<sub>''n''</sub>}} is the ''[[Falling and rising factorials|rising factorial]]'' {{math|(''v'')<sub>''n''</sub> {{=}} ''v''(''v''+1)(''v''+2) ... (''v''+''n''-1)}}, {{math|''G''<sub>''n''</sub>(''k'')}} are the [[Gregory coefficients]] of higher order with {{math|''G''<sub>''n''</sub>(1) {{=}} ''G''<sub>''n''</sub>}}, {{math|Γ}} is the [[gamma function]] and {{math|ζ}} is the [[Hurwitz zeta function]].<ref name="blag2016">{{cite journal | last = Blagouchine | first = Ia. V. | arxiv = 1408.3902 | journal = Journal of Mathematical Analysis and Applications | pages = 404β434 | title = Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to {{math|π<sup>β1</sup>}} | volume = 442 | year = 2016| bibcode = 2014arXiv1408.3902B | doi = 10.1016/J.JMAA.2016.04.032 | s2cid = 119661147 }}</ref><ref name="blag2018" /> Similar series with the Cauchy numbers of the second kind {{math|''C''<sub>''n''</sub>}} reads<ref name="blag2016" /><ref name="blag2018" /> :<math> \psi(v)=\ln(v-1) + \sum_{n=1}^\infty\frac{C_{n}(n-1)!}{(v)_{n}},\qquad \Re(v) >1, </math> A series with the [[Bernoulli polynomials of the second kind]] has the following form<ref name="blag2018" /> :<math> \psi(v)=\ln(v+a) + \sum_{n=1}^\infty\frac{(-1)^n\psi_{n}(a)\,(n-1)!}{(v)_{n}},\qquad \Re(v)>-a, </math> where {{math|''Ο<sub>n</sub>''(''a'')}} are the ''Bernoulli polynomials of the second kind'' defined by the generating equation : <math> \frac{z(1+z)^a}{\ln(1+z)}= \sum_{n=0}^\infty z^n \psi_n(a) \,,\qquad |z|<1\,, </math> It may be generalized to : <math> \psi(v)= \frac{1}{r}\sum_{l=0}^{r-1}\ln(v+a+l) + \frac{1}{r}\sum_{n=1}^\infty\frac{(-1)^n N_{n,r}(a)(n-1)!}{(v)_{n}}, \qquad \Re(v)>-a, \quad r=1,2,3,\ldots </math> where the polynomials {{math|''N<sub>n,r</sub>''(''a'')}} are given by the following generating equation : <math> \frac{(1+z)^{a+m}-(1+z)^{a}}{\ln(1+z)}=\sum_{n=0}^\infty N_{n,m}(a) z^n , \qquad |z|<1, </math> so that {{math|''N<sub>n,1</sub>''(''a'') {{=}} ''Ο<sub>n</sub>''(''a'')}}.<ref name="blag2018" /> Similar expressions with the logarithm of the gamma function involve these formulas<ref name="blag2018" /> : <math> \psi(v)= \frac{1}{v+a-\tfrac12}\left\{\ln\Gamma(v+a) + v - \frac12\ln2\pi - \frac12 + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{(v)_{n}}(n-1)!\right\},\qquad \Re(v)>-a, </math> and : <math> \psi(v)= \frac{1}{\tfrac{1}{2}r+v+a-1}\left\{\ln\Gamma(v+a) + v - \frac12\ln2\pi - \frac12 + \frac{1}{r}\sum_{n=0}^{r-2} (r-n-1)\ln(v+a+n) +\frac{1}{r}\sum_{n=1}^\infty\frac{(-1)^n N_{n+1,r}(a)}{(v)_{n}}(n-1)!\right\}, </math> where <math>\Re(v)>-a</math> and <math>r=2,3,4,\ldots</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)