Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diophantine approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Effective bounds === All preceding lower bounds are not [[effective results in number theory|effective]], in the sense that the proofs do not provide any way to compute the constant implied in the statements. This means that one cannot use the results or their proofs to obtain bounds on the size of solutions of related Diophantine equations. However, these techniques and results can often be used to bound the number of solutions of such equations. Nevertheless, a refinement of [[Baker's theorem]] by Feldman provides an effective bound: if ''x'' is an algebraic number of degree ''n'' over the rational numbers, then there exist effectively computable constants ''c''(''x'') > 0 and 0 < ''d''(''x'') < ''n'' such that :<math>\left| x- \frac{p}{q} \right|>\frac{c(x)}{|q|^{d(x)}} </math> holds for all rational integers. However, as for every effective version of Baker's theorem, the constants ''d'' and 1/''c'' are so large that this effective result cannot be used in practice.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)