Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Directional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In group theory == ===Translations=== In the [[Poincaré algebra]], we can define an infinitesimal translation operator '''P''' as <math display="block">\mathbf{P}=i\nabla.</math> (the ''i'' ensures that '''P''' is a [[self-adjoint operator]]) For a finite displacement '''λ''', the [[Unitary operator|unitary]] [[Hilbert space]] [[Group representation|representation]] for translations is<ref>{{cite book| last1=Weinberg|first1=Steven|title=The quantum theory of fields|date=1999|publisher=Cambridge Univ. Press| location=Cambridge [u.a.]| isbn=9780521550017|edition=Reprinted (with corr.).|url-access=registration| url=https://archive.org/details/quantumtheoryoff00stev}}</ref> <math display="block">U(\boldsymbol{\lambda})=\exp\left(-i\boldsymbol{\lambda}\cdot\mathbf{P}\right).</math> By using the above definition of the infinitesimal translation operator, we see that the finite translation operator is an exponentiated directional derivative: <math display="block">U(\boldsymbol{\lambda})=\exp\left(\boldsymbol{\lambda}\cdot\nabla\right).</math> This is a translation operator in the sense that it acts on multivariable functions ''f''('''x''') as <math display="block">U(\boldsymbol{\lambda}) f(\mathbf{x})=\exp\left(\boldsymbol{\lambda}\cdot\nabla\right) f(\mathbf{x}) = f(\mathbf{x}+\boldsymbol{\lambda}).</math> {{math proof|title=Proof of the last equation |proof= In standard single-variable calculus, the derivative of a smooth function ''f''(''x'') is defined by (for small ''ε'') <math display="block">\frac{df}{dx} = \frac{f(x+\varepsilon) - f(x)}{\varepsilon}.</math> This can be rearranged to find ''f''(''x''+''ε''): <math display="block">f(x+\varepsilon)=f(x)+\varepsilon \,\frac{df}{dx}=\left(1+\varepsilon\,\frac{d}{dx}\right)f(x).</math> It follows that <math>[1+\varepsilon\,(d/dx)] </math> is a translation operator. This is instantly generalized<ref>{{cite book |last1=Zee|first1=A.|title=Einstein gravity in a nutshell|date=2013|publisher=Princeton University Press| location=Princeton| isbn=9780691145587}}</ref> to multivariable functions ''f''('''x''') <math display="block">f(\mathbf{x}+\boldsymbol{\varepsilon}) = \left(1+\boldsymbol{\varepsilon}\cdot\nabla\right) f(\mathbf{x}).</math> Here <math> \boldsymbol{\varepsilon}\cdot\nabla</math> is the directional derivative along the infinitesimal displacement '''''ε'''''. We have found the infinitesimal version of the translation operator: <math display="block">U(\boldsymbol{\varepsilon}) = 1 + \boldsymbol{\varepsilon}\cdot\nabla.</math> It is evident that the group multiplication law<ref>{{cite book | last1=Cahill |first1=Kevin Cahill | title=Physical mathematics | date=2013 | publisher=Cambridge University Press | location=Cambridge | isbn=978-1107005211 | edition=Repr.}}</ref> ''U''(''g'')''U''(''f'')=''U''(''gf'') takes the form <math display="block">U(\mathbf{a})U(\mathbf{b})=U(\mathbf{a+b}).</math> So suppose that we take the finite displacement '''''λ''''' and divide it into ''N'' parts (''N''→∞ is implied everywhere), so that '''''λ'''''/''N''='''''ε'''''. In other words, <math display="block">\boldsymbol{\lambda} = N \boldsymbol{\varepsilon}.</math> Then by applying ''U''('''''ε''''') ''N'' times, we can construct ''U''('''''λ'''''): <math display="block">[U(\boldsymbol{\varepsilon})]^N = U(N\boldsymbol{\varepsilon}) = U(\boldsymbol{\lambda}).</math> We can now plug in our above expression for U('''ε'''): <math display="block">[U(\boldsymbol{\varepsilon})]^N = \left[1+\boldsymbol{\varepsilon}\cdot\nabla\right]^N = \left[1+\frac{\boldsymbol{\lambda}\cdot\nabla}{N}\right]^N.</math> Using the identity<ref>{{cite book | first1 = Ron | last1 = Larson | last2 = Edwards | first2 = Bruce H. | title = Calculus of a single variable | date = 2010 | publisher = Brooks/Cole | location =Belmont | isbn = 9780547209982 | edition = 9th}}</ref> <math display="block">\exp(x)=\left[1+\frac{x}{N}\right]^N,</math> we have <math display="block">U(\boldsymbol{\lambda})=\exp\left(\boldsymbol{\lambda}\cdot\nabla\right).</math> And since {{math|1=''U''('''''ε''''')''f''('''x''') = ''f''('''x'''+'''''ε''''')}} we have <math display="block">[U(\boldsymbol{\varepsilon})]^N f(\mathbf{x}) = f(\mathbf{x}+N\boldsymbol{\varepsilon}) = f(\mathbf{x}+\boldsymbol{\lambda}) = U(\boldsymbol{\lambda})f(\mathbf{x}) = \exp\left(\boldsymbol{\lambda}\cdot\nabla\right)f(\mathbf{x}),</math> Q.E.D. As a technical note, this procedure is only possible because the translation group forms an [[abelian group|Abelian]] [[subgroup]] ([[Cartan subalgebra]]) in the Poincaré algebra. In particular, the group multiplication law ''U''('''a''')''U''('''b''') = ''U''('''a'''+'''b''') should not be taken for granted. We also note that Poincaré is a connected [[Lie group]]. It is a group of transformations ''T''(''ξ'') that are described by a continuous set of real parameters <math>\xi^a</math>. The group multiplication law takes the form <math display="block">T(\bar{\xi})T(\xi) = T(f(\bar{\xi},\xi)).</math> Taking <math>\xi^a = 0</math> as the coordinates of the identity, we must have <math display="block">f^a(\xi,0)=f^a(0,\xi)=\xi^a.</math> The actual operators on the Hilbert space are represented by unitary operators ''U''(''T''(''ξ'')). In the above notation we suppressed the ''T''; we now write ''U''('''λ''') as ''U''('''P'''('''λ''')). For a small neighborhood around the identity, the [[power series]] representation <math display="block">U(T(\xi))=1+i\sum_a\xi^a t_a+\frac{1}{2}\sum_{b,c}\xi^b\xi^c t_{bc}+\cdots</math> is quite good. Suppose that U(T(ξ)) form a non-projective representation, i.e., <math display="block">U(T(\bar{\xi}))U(T(\xi))=U(T(f(\bar{\xi},\xi))).</math> The expansion of f to second power is <math display="block">f^a(\bar{\xi},\xi)=\xi^a+\bar{\xi}^a+\sum_{b,c}f^{abc}\bar{\xi}^b\xi^c.</math> After expanding the representation multiplication equation and equating coefficients, we have the nontrivial condition <math display="block">t_{bc}=-t_b t_c-i\sum_a f^{abc}t_a.</math> Since <math> t_{ab}</math> is by definition symmetric in its indices, we have the standard [[Lie algebra]] commutator: <math display="block">[t_b, t_c]=i\sum_a(-f^{abc}+f^{acb})t_a=i\sum_a C^{abc}t_a,</math> with ''C'' the [[structure constant]]. The generators for translations are partial derivative operators, which commute: <math display="block">\left[\frac{\partial}{\partial x^b},\frac{\partial }{\partial x^c}\right]=0.</math> This implies that the structure constants vanish and thus the quadratic coefficients in the f expansion vanish as well. This means that ''f'' is simply additive: <math display="block">f^a_\text{abelian}(\bar{\xi},\xi)=\xi^a+\bar{\xi}^a,</math> and thus for abelian groups, <math display="block">U(T(\bar{\xi}))U(T(\xi))=U(T(\bar{\xi}+\xi)).</math> Q.E.D. }} ===Rotations=== The [[rotation operator (quantum mechanics)|rotation operator]] also contains a directional derivative. The rotation operator for an angle '''''θ''''', i.e. by an amount ''θ'' = |'''''θ'''''| about an axis parallel to <math> \hat{\theta} = \boldsymbol{\theta}/\theta</math> is <math display="block">U(R(\mathbf{\theta}))=\exp(-i\mathbf{\theta}\cdot\mathbf{L}).</math> Here '''L''' is the vector operator that generates [[SO(3)]]: <math display="block">\mathbf{L}=\begin{pmatrix} 0& 0 & 0\\ 0& 0 & 1\\ 0& -1 & 0 \end{pmatrix}\mathbf{i}+\begin{pmatrix} 0 &0 & -1\\ 0& 0 &0 \\ 1 & 0 & 0 \end{pmatrix}\mathbf{j}+\begin{pmatrix} 0&1 &0 \\ -1&0 &0 \\ 0 & 0 & 0 \end{pmatrix}\mathbf{k}.</math> It may be shown geometrically that an infinitesimal right-handed rotation changes the position vector '''x''' by <math display="block">\mathbf{x}\rightarrow \mathbf{x}-\delta\boldsymbol{\theta}\times\mathbf{x}.</math> So we would expect under infinitesimal rotation: <math display="block">U(R(\delta\boldsymbol{\theta})) f(\mathbf{x}) = f(\mathbf{x}-\delta\boldsymbol{\theta}\times\mathbf{x})=f(\mathbf{x})-(\delta\boldsymbol{\theta}\times\mathbf{x})\cdot\nabla f.</math> It follows that <math display="block">U(R(\delta\mathbf{\theta}))=1-(\delta\mathbf{\theta}\times\mathbf{x})\cdot\nabla.</math> Following the same exponentiation procedure as above, we arrive at the rotation operator in the position basis, which is an exponentiated directional derivative:<ref>{{cite book|last1=Shankar|first1=R. | title=Principles of quantum mechanics | date=1994|publisher=Kluwer Academic / Plenum|location=New York|isbn=9780306447907|page=318|edition=2nd}}</ref> <math display="block">U(R(\mathbf{\theta}))=\exp(-(\mathbf{\theta}\times\mathbf{x})\cdot\nabla).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)