Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet character
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Products of prime powers === Let <math>m=p_1^{m_1}p_2^{m_2} \cdots p_k^{m_k} = q_1q_2 \cdots q_k</math> where <math> p_1<p_2< \dots < p_k</math> be the factorization of <math>m</math> into prime powers. The group of units mod <math>m</math> is isomorphic to the direct product of the groups mod the <math>q_i</math>:<ref>See [[Multiplicative group of integers modulo n#General composite numbers|group of units]] for details</ref> :<math>(\mathbb{Z}/m\mathbb{Z})^\times \cong(\mathbb{Z}/q_1\mathbb{Z})^\times \times(\mathbb{Z}/q_2\mathbb{Z})^\times \times \dots \times(\mathbb{Z}/q_k\mathbb{Z})^\times .</math> This means that 1) there is a one-to-one correspondence between <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> and <math>k</math>-tuples <math>(a_1, a_2,\dots, a_k)</math> where <math>a_i\in(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and 2) multiplication mod <math>m</math> corresponds to coordinate-wise multiplication of <math>k</math>-tuples: :<math>ab\equiv c\pmod{m}</math> corresponds to :<math>(a_1,a_2,\dots,a_k)\times(b_1,b_2,\dots,b_k)=(c_1,c_2,\dots,c_k)</math> where <math>c_i\equiv a_ib_i\pmod{q_i}.</math> The [[Chinese remainder theorem]] (CRT) implies that the <math>a_i</math> are simply <math>a_i\equiv a\pmod{q_i}.</math> There are subgroups <math> G_i<(\mathbb{Z}/m\mathbb{Z})^\times</math> such that <ref>To construct the <math>G_i, </math> for each <math> a\in (\mathbb{Z}/q_i\mathbb{Z})^\times </math> use the CRT to find <math>a_i\in (\mathbb{Z}/m\mathbb{Z})^\times</math> where :<math>a_i\equiv \begin{cases} a &\mod q_i\\ 1&\mod q_j, j\ne i. \end{cases} </math> </ref> :<math>G_i\cong(\mathbb{Z}/q_i\mathbb{Z})^\times </math> and :<math>G_i\equiv \begin{cases} (\mathbb{Z}/q_i\mathbb{Z})^\times &\mod q_i\\ \{1\}&\mod q_j, j\ne i. \end{cases} </math> Then <math>(\mathbb{Z}/m\mathbb{Z})^\times \cong G_1\times G_2\times...\times G_k</math> and every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> corresponds to a <math>k</math>-tuple <math>(a_1, a_2,...a_k)</math> where <math>a_i\in G_i </math> and <math>a_i\equiv a\pmod{q_i}. </math> Every <math>a\in (\mathbb{Z}/m\mathbb{Z})^\times</math> can be uniquely factored as <math>a =a_1a_2...a_k.</math> <ref>Assume <math>a</math> corresponds to <math>(a_1,a_2, ...)</math>. By construction <math>a_1</math> corresponds to <math>(a_1,1,1,...)</math>, <math>a_2</math> to <math>(1,a_2,1,...)</math> etc. whose coordinate-wise product is <math>(a_1,a_2, ...).</math></ref> <ref>For example let <math>m=40, q_1=8, q_2=5.</math> Then <math>G_1=\{1,11,21,31\}</math> and <math>G_2=\{1,9,17,33\}.</math> The factorization of the elements of <math>(\mathbb{Z}/40\mathbb{Z})^\times</math> is :<math> \begin{array}{|c|c|c|c|c|c|c|} & 1 & 9 & 17 & 33 \\ \hline 1 & 1 & 9 & 17 & 33 \\ 11 & 11 & 19 & 27 & 3 \\ 21 & 21 & 29 & 37 & 13 \\ 31 & 31 & 39 & 7 & 23 \\ \end{array} </math> </ref> If <math>\chi_{m,\_}</math> is a character mod <math>m,</math> on the subgroup <math>G_i</math> it must be identical to some <math>\chi_{q_i,\_}</math> mod <math>q_i</math> Then :<math>\chi_{m,\_}(a)=\chi_{m,\_}(a_1a_2...)=\chi_{m,\_}(a_1)\chi_{m,\_}(a_2)...=\chi_{q_1,\_}(a_1)\chi_{q_2,\_}(a_2)...,</math> showing that every character mod <math> m</math> is the product of characters mod the <math>q_i</math>. For <math>(t,m)=1</math> define<ref>See [https://lmfdb.org/knowledge/show/character.dirichlet.conrey Conrey labeling].</ref> :<math> \chi_{m,t}=\chi_{q_1,t}\chi_{q_2,t}...</math> Then for <math>(rs,m)=1</math> and all <math>a</math> and <math>b</math><ref>Because these formulas are true for each factor.</ref> :<math>\chi_{m,r}(a)\chi_{m,r}(b)=\chi_{m,r}(ab),</math> showing that <math>\chi_{m,r}</math> is a character and :<math>\chi_{m,r}(a)\chi_{m,s}(a)=\chi_{m,rs}(a),</math> showing an isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times.</math> ==== Examples ''m'' = 15, 24, 40 ==== <math>(\mathbb{Z}/15\mathbb{Z})^\times\cong(\mathbb{Z}/3\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 15 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{5,1} & \chi_{5,2} & \chi_{5,3} & \chi_{5,4} \\ \hline \chi_{3,1} & \chi_{15,1} & \chi_{15,7} & \chi_{15,13} & \chi_{15,4} \\ \chi_{3,2} & \chi_{15,11} & \chi_{15,2} & \chi_{15,8} & \chi_{15,14} \\ \end{array} </math> The nonzero values of the characters mod 15 are :<math> \begin{array}{|||} & 1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\ \hline \chi_{15,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{15,2} & 1 & -i & -1 & i & i & -1 & -i & 1 \\ \chi_{15,4} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{15,7} & 1 & i & -1 & i & -i & 1 & -i & -1 \\ \chi_{15,8} & 1 & i & -1 & -i & -i & -1 & i & 1 \\ \chi_{15,11} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ \chi_{15,13} & 1 & -i & -1 & -i & i & 1 & i & -1 \\ \chi_{15,14} & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\ \end{array} </math>. <math>(\mathbb{Z}/24\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/3\mathbb{Z})^\times.</math> The factorization of the characters mod 24 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{3,1} & \chi_{24,1} & \chi_{24,19} & \chi_{24,13} & \chi_{24,7} \\ \chi_{3,2} & \chi_{24,17} & \chi_{24,11} & \chi_{24,5} & \chi_{24,23} \\ \end{array} </math> The nonzero values of the characters mod 24 are :<math> \begin{array}{|||} & 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 \\ \hline \chi_{24,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{24,5} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \chi_{24,7} & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ \chi_{24,11} & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ \chi_{24,13} & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \chi_{24,17} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \chi_{24,19} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{24,23} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \end{array} </math>. <math>(\mathbb{Z}/40\mathbb{Z})^\times\cong(\mathbb{Z}/8\mathbb{Z})^\times\times(\mathbb{Z}/5\mathbb{Z})^\times.</math> The factorization of the characters mod 40 is :<math> \begin{array}{|c|c|c|c|c|c|c|} & \chi_{8,1} & \chi_{8,3} & \chi_{8,5} & \chi_{8,7} \\ \hline \chi_{5,1} & \chi_{40,1} & \chi_{40,11} & \chi_{40,21} & \chi_{40,31} \\ \chi_{5,2} & \chi_{40,17} & \chi_{40,27} & \chi_{40,37} & \chi_{40,7} \\ \chi_{5,3} & \chi_{40,33} & \chi_{40,3} & \chi_{40,13} & \chi_{40,23} \\ \chi_{5,4} & \chi_{40,9} & \chi_{40,19} & \chi_{40,29} & \chi_{40,39} \\ \end{array} </math> The nonzero values of the characters mod 40 are :<math> \begin{array}{|||} & 1 & 3 & 7 & 9 & 11 & 13 & 17 & 19 & 21 & 23 & 27 & 29 & 31 & 33 & 37 & 39 \\ \hline \chi_{40,1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi_{40,3} & 1 & i & i & -1 & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 \\ \chi_{40,7} & 1 & i & -i & -1 & -1 & -i & i & 1 & 1 & i & -i & -1 & -1 & -i & i & 1 \\ \chi_{40,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{40,11} & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 \\ \chi_{40,13} & 1 & -i & -i & -1 & -1 & -i & -i & 1 & -1 & i & i & 1 & 1 & i & i & -1 \\ \chi_{40,17} & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 & 1 & -i & i & -1 \\ \chi_{40,19} & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 \\ \chi_{40,21} & 1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\ \chi_{40,23} & 1 & -i & i & -1 & -1 & i & -i & 1 & 1 & -i & i & -1 & -1 & i & -i & 1 \\ \chi_{40,27} & 1 & -i & -i & -1 & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 \\ \chi_{40,29} & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\ \chi_{40,31} & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ \chi_{40,33} & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 & 1 & i & -i & -1 \\ \chi_{40,37} & 1 & i & i & -1 & -1 & i & i & 1 & -1 & -i & -i & 1 & 1 & -i & -i & -1 \\ \chi_{40,39} & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \end{array} </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)