Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Characterizations of distributions==== '''Proposition.''' If <math>T</math> is a [[Linear form|linear functional]] on <math>C_c^\infty(U)</math> then the following are equivalent: # {{mvar|T}} is a distribution; # {{mvar|T}} is [[Continuous function|continuous]]; # {{mvar|T}} is [[Continuous function|continuous]] at the origin; # {{mvar|T}} is [[Uniform continuity|uniformly continuous]]; # {{mvar|T}} is a [[bounded operator]]; # {{mvar|T}} is [[sequentially continuous]]; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to some <math>f \in C_c^\infty(U),</math> <math display=inline>\lim_{i \to \infty} T\left(f_i\right) = T(f);</math><ref group="note">Even though the topology of <math>C_c^\infty(U)</math> is not metrizable, a linear functional on <math>C_c^\infty(U)</math> is continuous if and only if it is sequentially continuous.</ref> # {{mvar|T}} is [[sequentially continuous]] at the origin; in other words, {{mvar|T}} maps null sequences<ref group=note name="Def null sequence">A '''{{em|null sequence}}''' is a sequence that converges to the origin.</ref> to null sequences; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to the origin (such a sequence is called a {{em|null sequence}}), <math display=inline>\lim_{i \to \infty} T\left(f_i\right) = 0;</math> #* a {{em|null sequence}} is by definition any sequence that converges to the origin; # {{mvar|T}} maps null sequences to bounded subsets; #* explicitly, for every sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U)</math> that converges in <math>C_c^\infty(U)</math> to the origin, the sequence <math>\left(T\left(f_i\right)\right)_{i=1}^\infty</math> is bounded; # {{mvar|T}} maps [[Mackey convergence|Mackey convergent]] null sequences to bounded subsets; #* explicitly, for every Mackey convergent null sequence <math>\left(f_i\right)_{i=1}^\infty</math> in <math>C_c^\infty(U),</math> the sequence <math>\left(T\left(f_i\right)\right)_{i=1}^\infty</math> is bounded; #* a sequence <math>f_{\bull} = \left(f_i\right)_{i=1}^\infty</math> is said to be {{em|[[Mackey convergence|Mackey convergent]] to the origin}} if there exists a divergent sequence <math>r_{\bull} = \left(r_i\right)_{i=1}^\infty \to \infty</math> of positive real numbers such that the sequence <math>\left(r_i f_i\right)_{i=1}^\infty</math> is bounded; every sequence that is Mackey convergent to the origin necessarily converges to the origin (in the usual sense); # The kernel of {{mvar|T}} is a closed subspace of <math>C_c^\infty(U);</math> # The graph of {{mvar|T}} is closed; <!------ START: Removed information ---- * Note in particular that the following seminorms on <math>C^\infty(U)</math> (which recall were defined earlier) all restrict to continuous seminorms on <math>C_c^\infty(U)</math>: <math>\ q_{i,K}, \ r_{i,K}, \ r_{t,K},</math> and <math>s_{p,K},</math> where {{mvar|K}} is any compact subset of {{mvar|U}}, <math>i \geq 0</math> is an integer, and <math>p</math> is a multi-index. So to show that {{mvar|T}} is continuous, it {{em|suffices}} to show that the restriction to <math>C_c^\infty(U)</math> of one of these seminorms, call it <math>g,</math> satisfies <math>|T| \leq C g</math> for some <math>C > 0.</math> ---- END: Removed information ----> # There exists a continuous seminorm <math>g</math> on <math>C_c^\infty(U)</math> such that <math>|T| \leq g;</math> # There exists a constant <math>C > 0</math> and a finite subset <math>\{g_1, \ldots, g_m\} \subseteq \mathcal{P}</math> (where <math>\mathcal{P}</math> is any collection of continuous seminorms that defines the canonical LF topology on <math>C_c^\infty(U)</math>) such that <math>|T| \leq C(g_1 + \cdots + g_m);</math><ref group="note">If <math>\mathcal{P}</math> is also [[Directed set|directed]] under the usual function comparison then we can take the finite collection to consist of a single element.</ref> # For every compact subset <math>K\subseteq U</math> there exist constants <math>C>0</math> and <math>N\in \N</math> such that for all <math>f \in C^\infty(K),</math>{{sfn|Trèves|2006|pp=222-223}} <math display=block>|T(f)| \leq C \sup \{|\partial^\alpha f(x)| : x \in U, |\alpha|\leq N\};</math> # For every compact subset <math>K\subseteq U</math> there exist constants <math>C_K>0</math> and <math>N_K\in \N</math> such that for all <math>f \in C_c^\infty(U)</math> with [[#support of a function|support]] contained in <math>K,</math><ref name="Grubb 2009 page=14">See for example {{harvnb|Grubb|2009|page=14}}.</ref> <math display=block>|T(f)| \leq C_K \sup \{|\partial^\alpha f(x)| : x \in K, |\alpha|\leq N_K\};</math> # For any compact subset <math>K\subseteq U</math> and any sequence <math>\{f_i\}_{i=1}^\infty</math> in <math>C^\infty(K),</math> if <math>\{\partial^p f_i\}_{i=1}^\infty</math> converges uniformly to zero for all [[multi-index|multi-indices]] <math>p,</math> then <math>T(f_i) \to 0;</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)