Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Divergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == {{Main|Vector calculus identities}} The following properties can all be derived from the ordinary differentiation rules of [[calculus]]. Most importantly, the divergence is a [[linear operator]], i.e., :<math>\operatorname{div}(a\mathbf{F} + b\mathbf{G}) = a \operatorname{div} \mathbf{F} + b \operatorname{div} \mathbf{G}</math> for all vector fields {{math|'''F'''}} and {{math|'''G'''}} and all [[real number]]s {{math|''a''}} and {{math|''b''}}. There is a [[product rule]] of the following type: if {{mvar|φ}} is a scalar-valued function and {{math|'''F'''}} is a vector field, then :<math>\operatorname{div}(\varphi \mathbf{F}) = \operatorname{grad} \varphi \cdot \mathbf{F} + \varphi \operatorname{div} \mathbf{F},</math> or in more suggestive notation :<math>\nabla\cdot(\varphi \mathbf{F}) = (\nabla\varphi) \cdot \mathbf{F} + \varphi (\nabla\cdot\mathbf{F}).</math> Another product rule for the [[cross product]] of two vector fields {{math|'''F'''}} and {{math|'''G'''}} in three dimensions involves the [[Curl (mathematics)|curl]] and reads as follows: :<math>\operatorname{div}(\mathbf{F}\times\mathbf{G}) = \operatorname{curl} \mathbf{F} \cdot\mathbf{G} - \mathbf{F} \cdot \operatorname{curl} \mathbf{G},</math> or :<math>\nabla\cdot(\mathbf{F}\times\mathbf{G}) = (\nabla\times\mathbf{F})\cdot\mathbf{G} - \mathbf{F}\cdot(\nabla\times\mathbf{G}).</math> The [[Laplacian]] of a [[scalar field]] is the divergence of the field's [[gradient]]: :<math>\operatorname{div}(\operatorname{grad}\varphi) = \Delta\varphi.</math> The divergence of the [[Curl (mathematics)|curl]] of any vector field (in three dimensions) is equal to zero: :<math>\nabla\cdot(\nabla\times\mathbf{F})=0.</math> If a vector field {{math|'''F'''}} with zero divergence is defined on a ball in {{math|'''R'''<sup>3</sup>}}, then there exists some vector field {{math|'''G'''}} on the ball with {{math|'''F''' {{=}} curl '''G'''}}. For regions in {{math|'''R'''<sup>3</sup>}} more topologically complicated than this, the latter statement might be false (see [[Poincaré lemma]]). The degree of ''failure'' of the truth of the statement, measured by the [[homology (mathematics)|homology]] of the [[chain complex]] :<math>\{ \text{scalar fields on } U \} ~ \overset{\operatorname{grad}}{\rarr} ~ \{ \text{vector fields on } U \} ~ \overset{\operatorname{curl}}{\rarr} ~ \{ \text{vector fields on } U \} ~ \overset{\operatorname{div}}{\rarr} ~ \{ \text{scalar fields on } U \}</math> serves as a nice quantification of the complicatedness of the underlying region {{math|''U''}}. These are the beginnings and main motivations of [[de Rham cohomology]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)