Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Double factorial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== ===Definitions=== In the same way that the double factorial generalizes the notion of the [[Factorial|single factorial]], the following definition of the integer-valued multiple factorial functions (multifactorials), or {{mvar|α}}-factorial functions, extends the notion of the double factorial function for positive integers <math>\alpha</math>: <math display="block"> n!_{(\alpha)} = \begin{cases} n \cdot (n-\alpha)!_{(\alpha)} & \text{ if } n > \alpha \,; \\ n & \text{ if } 1 \leq n \leq \alpha \,; \text{and} \\ (n+\alpha)!_{(\alpha)} / (n+\alpha) & \text{ if } n \leq 0 \text{ and is not a negative multiple of } \alpha \,; \end{cases} </math> ===Alternative extension of the multifactorial=== Alternatively, the multifactorial {{math|''z''!<sub>(''α'')</sub>}} can be extended to most real and complex numbers {{mvar|z}} by noting that when {{mvar|z}} is one more than a positive multiple of the positive integer {{mvar|α}} then <math display="block">\begin{align} z!_{(\alpha)} &= z(z-\alpha)\cdots (\alpha+1) \\ &= \alpha^\frac{z-1}{\alpha}\left(\frac{z}{\alpha}\right)\left(\frac{z-\alpha}{\alpha}\right)\cdots \left(\frac{\alpha+1}{\alpha}\right) \\ &= \alpha^\frac{z-1}{\alpha} \frac{\Gamma\left(\frac{z}{\alpha}+1\right)}{\Gamma\left(\frac{1}{\alpha}+1\right)}\,. \end{align}</math> This last expression is defined much more broadly than the original. In the same way that {{math|''z''!}} is not defined for negative integers, and {{math|''z''‼}} is not defined for negative even integers, {{math|''z''!<sub>(''α'')</sub>}} is not defined for negative multiples of {{mvar|α}}. However, it is defined and satisfies {{math|1=(''z''+''α'')!<sub>(''α'')</sub> = (''z''+''α'')·''z''!<sub>(''α'')</sub>}} for all other complex numbers {{mvar|z}}. This definition is consistent with the earlier definition only for those integers {{mvar|z}} satisfying {{math|''z'' ≡ 1 mod ''α''}}. In addition to extending {{math|''z''!<sub>(''α'')</sub>}} to most complex numbers {{mvar|z}}, this definition has the feature of working for all positive real values of {{mvar|α}}. Furthermore, when {{math|1=''α'' = 1}}, this definition is mathematically equivalent to the {{math|Π(''z'')}} function, described above. Also, when {{math|1=''α'' = 2}}, this definition is mathematically equivalent to the [[#Complex arguments|alternative extension of the double factorial]]. ===Generalized Stirling numbers expanding the multifactorial functions=== A class of generalized [[Stirling numbers of the first kind]] is defined for {{math|''α'' > 0}} by the following triangular recurrence relation: <math display="block">\left[\begin{matrix} n \\ k \end{matrix} \right]_{\alpha} = (\alpha n+1-2\alpha) \left[\begin{matrix} n-1 \\ k \end{matrix} \right]_{\alpha} + \left[\begin{matrix} n-1 \\ k-1 \end{matrix} \right]_{\alpha} + \delta_{n,0} \delta_{k,0}\,. </math> These generalized ''{{mvar|α}}-factorial coefficients'' then generate the distinct symbolic polynomial products defining the multiple factorial, or {{mvar|α}}-factorial functions, {{math|(''x'' − 1)!<sub>(''α'')</sub>}}, as <math display="block"> \begin{align} (x-1|\alpha)^{\underline{n}} & := \prod_{i=0}^{n-1} \left(x-1-i\alpha\right) \\ & = (x-1)(x-1-\alpha)\cdots\bigl(x-1-(n-1)\alpha\bigr) \\ & = \sum_{k=0}^n \left[\begin{matrix} n \\ k \end{matrix} \right] (-\alpha)^{n-k} (x-1)^k \\ & = \sum_{k=1}^n \left[\begin{matrix} n \\ k \end{matrix} \right]_{\alpha} (-1)^{n-k} x^{k-1}\,. \end{align} </math> The distinct polynomial expansions in the previous equations actually define the {{mvar|α}}-factorial products for multiple distinct cases of the least residues {{math|''x'' ≡ ''n''<sub>0</sub> mod ''α''}} for {{math|''n''<sub>0</sub> ∈ {0, 1, 2, ..., ''α'' − 1<nowiki>}</nowiki>}}. The generalized {{mvar|α}}-factorial polynomials, {{math|''σ''{{su|b=''n''|p=(''α'')}}(''x'')}} where {{math|''σ''{{su|b=''n''|p=(1)}}(''x'') ≡ ''σ''<sub>''n''</sub>(''x'')}}, which generalize the [[Stirling polynomial#Stirling convolution polynomials|Stirling convolution polynomials]] from the single factorial case to the multifactorial cases, are defined by <math display="block">\sigma_n^{(\alpha)}(x) := \left[\begin{matrix} x \\ x-n \end{matrix} \right]_{(\alpha)} \frac{(x-n-1)!}{x!}</math> for {{math|0 ≤ ''n'' ≤ ''x''}}. These polynomials have a particularly nice closed-form [[ordinary generating function]] given by <math display="block">\sum_{n \geq 0} x \cdot \sigma_n^{(\alpha)}(x) z^n = e^{(1-\alpha)z} \left(\frac{\alpha z e^{\alpha z}}{e^{\alpha z}-1}\right)^x\,. </math> Other combinatorial properties and expansions of these generalized {{mvar|α}}-factorial triangles and polynomial sequences are considered in {{harvtxt|Schmidt|2010}}.<ref>{{cite journal|last1=Schmidt|first1=Maxie D.|title=Generalized ''j''-Factorial Functions, Polynomials, and Applications|journal=J. Integer Seq.|date=2010|volume=13|url=https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html}}</ref> ===Exact finite sums involving multiple factorial functions=== Suppose that {{math|''n'' ≥ 1}} and {{math|''α'' ≥ 2}} are integer-valued. Then we can expand the next single finite sums involving the multifactorial, or {{mvar|α}}-factorial functions, {{math|(''αn'' − 1)!<sub>(''α'')</sub>}}, in terms of the [[Pochhammer symbol]] and the generalized, rational-valued [[binomial coefficients]] as <math display="block"> \begin{align} (\alpha n-1)!_{(\alpha)} & = \sum_{k=0}^{n-1} \binom{n-1}{k+1} (-1)^k \times \left(\frac{1}{\alpha}\right)_{-(k+1)} \left(\frac{1}{\alpha}-n\right)_{k+1} \times \bigl(\alpha(k+1)-1\bigr)!_{(\alpha)} \bigl(\alpha(n-k-1)-1\bigr)!_{(\alpha)} \\ & = \sum_{k=0}^{n-1} \binom{n-1}{k+1} (-1)^k \times \binom{\frac{1}{\alpha}+k-n}{k+1} \binom{\frac{1}{\alpha}-1}{k+1} \times \bigl(\alpha(k+1)-1\bigr)!_{(\alpha)} \bigl(\alpha(n-k-1)-1\bigr)!_{(\alpha)}\,, \end{align} </math> and moreover, we similarly have double sum expansions of these functions given by <math display="block"> \begin{align} (\alpha n-1)!_{(\alpha)} & = \sum_{k=0}^{n-1} \sum_{i=0}^{k+1} \binom{n-1}{k+1} \binom{k+1}{i} (-1)^k \alpha^{k+1-i} (\alpha i-1)!_{(\alpha)} \bigl(\alpha(n-1-k)-1\bigr)!_{(\alpha)} \times (n-1-k)_{k+1-i} \\ & = \sum_{k=0}^{n-1} \sum_{i=0}^{k+1} \binom{n-1}{k+1} \binom{k+1}{i} \binom{n-1-i}{k+1-i} (-1)^k \alpha^{k+1-i} (\alpha i-1)!_{(\alpha)} \bigl(\alpha(n-1-k)-1\bigr)!_{(\alpha)} \times (k+1-i)!. \end{align} </math> The first two sums above are similar in form to a known ''non-round'' combinatorial identity for the double factorial function when {{math|1=''α'' := 2}} given by {{harvtxt|Callan|2009}}. <math display="block">(2n-1)!! = \sum_{k=0}^{n-1} \binom{n}{k+1} (2k-1)!! (2n-2k-3)!!.</math> Similar identities can be obtained via context-free grammars.<ref>{{Cite journal|last1=Triana |first1=Juan |last2=De Castro |first2=Rodrigo |year=2019 |title=The formal derivative operator and multifactorial numbers|journal=Revista Colombiana de Matemáticas|volume=53 |issue=2 |pages=125–137 |doi=10.15446/recolma.v53n2.85522 |issn=0034-7426 |doi-access=free }}</ref> Additional finite sum expansions of congruences for the {{mvar|α}}-factorial functions, {{math|(''αn'' − ''d'')!<sub>(''α'')</sub>}}, modulo any prescribed integer {{math|''h'' ≥ 2}} for any {{math|0 ≤ ''d'' < ''α''}} are given by {{harvtxt|Schmidt|2018}}.<ref>{{cite journal | last = Schmidt | first = Maxie D. | arxiv = 1701.04741 | journal = Integers | mr = 3862591 | pages = A78:1–A78:34 | title = New congruences and finite difference equations for generalized factorial functions | url = https://math.colgate.edu/~integers/s78/s78.pdf | volume = 18 | year = 2018}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)