Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ellipse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tangent === An arbitrary line <math>g</math> intersects an ellipse at 0, 1, or 2 points, respectively called an ''exterior line'', ''tangent'' and ''secant''. Through any point of an ellipse there is a unique tangent. The tangent at a point <math>(x_1,\, y_1)</math> of the ellipse <math>\tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1</math> has the coordinate equation: <math display="block">\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1.</math> A vector [[parametric equation]] of the tangent is: <math display="block">\vec x = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \left(\begin{array}{r} -y_1 a^2 \\ x_1 b^2 \end{array}\right) , \quad s \in \R. </math> '''Proof:''' Let <math>(x_1,\, y_1)</math> be a point on an ellipse and <math display="inline">\vec{x} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \begin{pmatrix} u \\ v \end{pmatrix}</math> be the equation of any line <math>g</math> containing <math>(x_1,\, y_1)</math>. Inserting the line's equation into the ellipse equation and respecting <math display="inline">\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1</math> yields: <math display="block"> \frac{\left(x_1 + su\right)^2}{a^2} + \frac{\left(y_1 + sv\right)^2}{b^2} = 1\ \quad\Longrightarrow\quad 2s\left(\frac{x_1u}{a^2} + \frac{y_1v}{b^2}\right) + s^2\left(\frac{u^2}{a^2} + \frac{v^2}{b^2}\right) = 0\ .</math> There are then cases: # <math>\frac{x_1}{a^2}u + \frac{y_1}{b^2}v = 0.</math> Then line <math>g</math> and the ellipse have only point <math>(x_1,\, y_1)</math> in common, and <math>g</math> is a tangent. The tangent direction has [[normal (geometry)|perpendicular vector]] <math>\begin{pmatrix} \frac{x_1}{a^2} & \frac{y_1}{b^2} \end{pmatrix}</math>, so the tangent line has equation <math display="inline">\frac{x_1}{a^2}x + \tfrac{y_1}{b^2}y = k</math> for some <math>k</math>. Because <math>(x_1,\, y_1)</math> is on the tangent and the ellipse, one obtains <math>k = 1</math>. # <math>\frac{x_ 1}{a^2}u + \frac{y_1}{b^2}v \ne 0.</math> Then line <math>g</math> has a second point in common with the ellipse, and is a secant. Using (1) one finds that <math>\begin{pmatrix} -y_1 a^2 & x_1 b^2 \end{pmatrix}</math> is a tangent vector at point <math>(x_1,\, y_1)</math>, which proves the vector equation. If <math>(x_1, y_1)</math> and <math>(u, v)</math> are two points of the ellipse such that <math display="inline">\frac{x_1u}{a^2} + \tfrac{y_1v}{b^2} = 0</math>, then the points lie on two ''conjugate diameters'' (see [[#Conjugate diameters|below]]). (If <math>a = b</math>, the ellipse is a circle and "conjugate" means "orthogonal".)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)