Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Erlang distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other applications=== The age distribution of [[cancer]] [[Disease incidence|incidence]] often follows the Erlang distribution, whereas the shape and scale parameters predict, respectively, the number of [[Carcinogenesis|driver events]] and the time interval between them.<ref>{{cite journal |last1=Belikov |first1=Aleksey V. |title=The number of key carcinogenic events can be predicted from cancer incidence |journal=Scientific Reports |date=22 September 2017 |volume=7 |issue=1 |page=12170 |doi=10.1038/s41598-017-12448-7|pmc=5610194 |pmid=28939880 |bibcode=2017NatSR...712170B }}</ref><ref>{{Cite journal|last1=Belikov|first1=Aleksey V.|last2=Vyatkin|first2=Alexey|last3=Leonov|first3=Sergey V.|date=2021-08-06|title=The Erlang distribution approximates the age distribution of incidence of childhood and young adulthood cancers|journal=PeerJ|language=en|volume=9|pages=e11976|pmid=34434669| doi=10.7717/peerj.11976| pmc=8351573|issn=2167-8359|doi-access=free}}</ref> More generally, the Erlang distribution has been suggested as good approximation of cell cycle time distribution, as result of multi-stage models.<ref>{{cite journal |last1=Yates |first1=Christian A. |title=A Multi-stage Representation of Cell Proliferation as a Markov Process |journal=Bulletin of Mathematical Biology |date=21 April 2017 |volume=79 |issue=1 |doi=10.1007/s11538-017-0356-4 |pages=2905β2928|doi-access=free |pmid=29030804 |pmc=5709504 }}</ref><ref>{{cite journal |last1=Gavagnin |first1=Enrico |title=The invasion speed of cell migration models with realistic cell cycle time distributions |journal=Journal of Theoretical Biology |date=21 November 2019 |volume=481 |doi=10.1016/j.jtbi.2018.09.010|arxiv=1806.03140 |pages=91β99 |pmid=30219568 |bibcode=2019JThBi.481...91G }}</ref> The [[kinesin]] is a molecular machine with two "feet" that "walks" along a filament. The waiting time between each step is exponentially distributed. When [[green fluorescent protein]] is attached to a foot of the kinesin, then the green dot visibly moves with Erlang distribution of k = 2.<ref>{{Cite journal |last1=Yildiz |first1=Ahmet |last2=Forkey |first2=Joseph N. |last3=McKinney |first3=Sean A. |last4=Ha |first4=Taekjip |last5=Goldman |first5=Yale E. |last6=Selvin |first6=Paul R. |author1-link=Ahmet YΔ±ldΔ±z (scientist) |author4-link=Taekjip Ha |author6-link=Paul R. Selvin |date=2003-06-27 |title=Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization |url=https://www.science.org/doi/10.1126/science.1084398 |journal=Science |language=en |volume=300 |issue=5628 |pages=2061β2065 |doi=10.1126/science.1084398 |pmid=12791999 |bibcode=2003Sci...300.2061Y |issn=0036-8075}}</ref> It has also been used in marketing for describing interpurchase times.<ref>{{cite journal |first1=C. |last1=Chatfield |first2=G.J. |last2=Goodhardt |title=A Consumer Purchasing Model with Erlang Interpurchase Times |journal=Journal of the American Statistical Association |date=December 1973 |volume=68 |issue=344 |pages=828β835 |doi=10.1080/01621459.1973.10481432 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)