Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler's formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Using polar coordinates=== Another proof<ref name=Strang>{{cite book |url=http://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/ |title=Calculus |first=Gilbert |last=Strang |page=389 |publisher=Wellesley-Cambridge |year=1991 |isbn=0-9614088-2-0}} Second proof on page.</ref> is based on the fact that all complex numbers can be expressed in [[polar coordinates]]. Therefore, [[for some]] {{mvar|r}} and {{mvar|θ}} depending on {{mvar|x}}, <math display="block">e^{i x} = r \left(\cos \theta + i \sin \theta\right).</math> No assumptions are being made about {{mvar|r}} and {{mvar|θ}}; they will be determined in the course of the proof. From any of the definitions of the exponential function it can be shown that the derivative of {{math|''e''<sup>''ix''</sup>}} is {{math|''ie''<sup>''ix''</sup>}}. Therefore, differentiating both sides gives <math display="block">i e ^{ix} = \left(\cos \theta + i \sin \theta\right) \frac{dr}{dx} + r \left(-\sin \theta + i \cos \theta\right) \frac{d\theta}{dx}.</math> Substituting {{math|''r''(cos ''θ'' + ''i'' sin ''θ'')}} for {{math|''e<sup>ix</sup>''}} and equating real and imaginary parts in this formula gives {{math|1=''{{sfrac|dr|dx}}'' = 0}} and {{math|1=''{{sfrac|dθ|dx}}'' = 1}}. Thus, {{mvar|r}} is a constant, and {{mvar|θ}} is {{math|''x'' + ''C''}} for some constant {{mvar|C}}. The initial values {{math|1=''r''(0) = 1}} and {{math|1=''θ''(0) = 0}} come from {{math|1=''e''<sup>0''i''</sup> = 1}}, giving {{math|1=''r'' = 1}} and {{math|1=''θ'' = ''x''}}. This proves the formula <math display="block">e^{i \theta} = 1(\cos \theta +i \sin \theta) = \cos \theta + i \sin \theta.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)