Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler–Lagrange equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Single function of two variables with higher derivatives=== If there is a single unknown function ''f'' to be determined that is dependent on two variables ''x''<sub>1</sub> and ''x''<sub>2</sub> and if the functional depends on higher derivatives of ''f'' up to ''n''-th order such that : <math> \begin{align} I[f] & = \int_{\Omega} \mathcal{L}(x_1, x_2, f, f_{1}, f_{2}, f_{11}, f_{12}, f_{22}, \dots, f_{22\dots 2})\, \mathrm{d}\mathbf{x} \\ & \qquad \quad f_{i} := \cfrac{\partial f}{\partial x_i} \; , \quad f_{ij} := \cfrac{\partial^2 f}{\partial x_i\partial x_j} \; , \;\; \dots \end{align} </math> then the Euler–Lagrange equation is<ref name=Courant/> :<math> \begin{align} \frac{\partial \mathcal{L}}{\partial f} & - \frac{\partial}{\partial x_1}\left(\frac{\partial \mathcal{L}}{\partial f_{1}}\right) - \frac{\partial}{\partial x_2}\left(\frac{\partial \mathcal{L}}{\partial f_{2}}\right) + \frac{\partial^2}{\partial x_1^2}\left(\frac{\partial \mathcal{L}}{\partial f_{11}}\right) + \frac{\partial^2}{\partial x_1\partial x_2}\left(\frac{\partial \mathcal{L}}{\partial f_{12}}\right) + \frac{\partial^2}{\partial x_2^2}\left(\frac{\partial \mathcal{L}}{\partial f_{22}}\right) \\ & - \dots + (-1)^n \frac{\partial^n}{\partial x_2^n}\left(\frac{\partial \mathcal{L}}{\partial f_{22\dots 2}}\right) = 0 \end{align} </math> which can be represented shortly as: :<math> \frac{\partial \mathcal{L}}{\partial f} +\sum_{j=1}^n \sum_{\mu_1 \leq \ldots \leq \mu_j} (-1)^j \frac{\partial^j}{\partial x_{\mu_{1}}\dots \partial x_{\mu_{j}}} \left( \frac{\partial \mathcal{L} }{\partial f_{\mu_1\dots\mu_j}}\right)=0 </math> wherein <math>\mu_1 \dots \mu_j</math> are indices that span the number of variables, that is, here they go from 1 to 2. Here summation over the <math>\mu_1 \dots \mu_j</math> indices is only over <math>\mu_1 \leq \mu_2 \leq \ldots \leq \mu_j</math> in order to avoid counting the same [[partial derivative]] multiple times, for example <math>f_{12} = f_{21}</math> appears only once in the previous equation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)